
Implementation of Algorithm for Image Feature
Extraction: Histogram of Oriented Gradients

1st Ernests Lavrinovics
MED08, Aalborg University

Copenhagen, Denmark
elavri21@student.aau.dk

Abstract—Image feature extraction is a vital pre-processing
step for image processing tasks such as tracking, object detection
or recognition, and image stitching. There are multiple methods
for feature extraction such as ORB, SIFT, HOG and others.
This contribution describes a from-scratch implementation of
Histogram of Oriented Gradients algorithm that is quantitatively
evaluated for performance and functionality. Quantitative tests
suggest that the implementation suffers from bugs as the gener-
ated feature vector has statistically significant differences when
compared to production-grade implementation.

Index Terms—Image Processing, Image feature Extraction,
HOG

I. INTRODUCTION

Machine learning is a powerful mean for solving image
classification problems by leveraging advanced statistical anal-
ysis and a dataset to perform the analysis. To perform auto-
mated image classification, it is necessary to train a machine
learning model that can perform the classification task using a
collection of algorithmically derived imagery features. These
imagery features are patterns of colour, shape or texture, all
described in a numerical form [1].

Histogram of Oriented Gradients (HOG) is a feature ex-
traction method that describes an image through its local
gradients [2]. HOG features were initially intended to be used
for human classification, although its efficiency has also been
investigated for military, digit and face recognition problems
[3] [4] [5]. The HOG method essentially subdivides an image
into multiple regions called cells for which a local gradient
is computed using a convolution mask for both X and Y
directions. Afterwards, the gradients are stored in spatial
resolution bins according to their direction. After the raw HOG
features are extracted, they are block-normalized to generalize
better during varying lighting conditions. An overview of the
algorithm’s pipeline diagram is shown in Fig.1.

Fig. 1. Description of sequential processing stages for extracting HOG
features and performin an image classification task; Image from [2].

II. OVERVIEW OF THE IMPLEMENTATION

The following section gives an overview of how each of
the pipeline steps is implemented as per Fig.1. The algorithm
is replicated using C++ 17 due to its minimal computational

overhead when compared to interpreted programming lan-
guages. The scope of this paper does not extend to replication
of the original publications test results by classifying the MIT
Pedestrian or INRIA datasets although functionality evaluation
is done through a statistical analysis of the final feature
descriptor versus a production-grade implementation of the
algorithm from the OpenCV C++ framework [6]. Performance
evaluation is also done by measuring elapsed time of com-
putation over multiple iterations. For the sake of simplicity,
the algorithm is implemented to process grayscale images.
The implementation uses certain OpenCV functions and data
structures as utilities to reduce the amount of boilerplate code.

1) Color & Gamma Normalization: The original contribu-
tion states minimal performance gains for square root gamma
compression. Essentially this step has been skipped in the
implementation as the authors themselves do not use it in their
default detector.

2) Gradient Computation: The gradient has been computed
using a [-1, 0, 1] mask for both X and Y directions as per
the original contribution’s default detector. In the original
contribution, the authors state that the [-1, 0, 1] mask works
the best. For performing the convolution, OpenCVs utility
functions were used as shown in Listing 1.

Listing 1. Gradient Computation
void HOG::gradientComputation() {
// Create filters with [-1, 0, 1] mask
cv::Mat filterX = (cv::Mat_<char>(1, 3) << -1,

0, 1);
cv::Mat filterY = (cv::Mat_<char>(3, 1) << -1,

0, 1);

// Gradient, magnitude and angles
cv::Mat gradX, gradY;
cv::filter2D(inputImgGray, gradX, CV_32F,

filterX);
cv::filter2D(inputImgGray, gradY, CV_32F,

filterY);
cv::magnitude(gradX, gradY, magnitude);
cv::phase(gradX, gradY, angles, true);

}

3) Weighted Vote, Spatial & Orientation Binning: This
step introduces a nonlinearity within the descriptor. After the
magnitude and angle matrices are obtained, they are divided
into uniform 8x8 pixel blocks called cells to define local spatial
regions. For each cell, a histogram with 9 bins is calculated
with a 0◦-180◦ angular width and votes are calculated by
adding the gradient magnitudes to the spatial bins. Thus

gradient directions in this contribution are normalized within
180◦ as per the HOG contribution’s default settings and
also because the authors report minimal performance gain
when increasing the resolution beyond 180◦, see Listing 2.
In this implementation, votes are not interpolated bi-linearly
between the neighbouring bin centres when saving them to
the histogram data structure. Loop that depicts how a cell is
processed is shown in Listing 3

Listing 2. Gradient Angle Normalization
void HOG::convToUnsignAngl(cv::Mat &srcAngles) {
for (int i = 0; i < srcAngles.rows; i++) {

for (int j = 0; j < srcAngles.cols; j++) {
if (srcAngles.at<float>(i, j) >= 180) {
srcAngles.at<float>(i, j) -= 180;

}
}

}
}

Listing 3. Gradient Angle Normalization
void HOG::processCell(const cv::Mat &cell, const cv

::Mat &cellMagn, cv::Mat &cellAngle, std::vector
<float> &dstHist)

{
// Convert dstAngle from unsigned to signed if a

value is larger than 180
convToUnsignAngl(cellAngle);

// Calculate the histogram of gradient
int binSize = 180 / numBins;
for (int i = 0; i < cellAngle.rows; i++) {

for (int j = 0; j < cellAngle.cols; j++) {
auto angle = cellAngle.at<float>(i, j);
auto binUnrounded = static_cast<int>(angle /

binSize);
int binRounded = static_cast<int>(binUnrounded

);

auto mag = cellMagn.at<float>(i, j);
dstHist[binRounded] += mag;

}
}

}

4) Contrast Normalizer Over Overlapping Spatial Blocks
and Final Descriptor: To make the implementation more
durable against illumination changes, the collected gradient
magnitude undergoes local contrast normalization. Normaliza-
tion is performed by grouping multiple cells into a larger spa-
tial sliding window such that the cells can contribute several
components to the final descriptor. Authors claim that this has
a performance benefit, hence this step has not been skipped
in the implementation. THis contribution again follows the
settings of their default detector, having the window contain
four cells, two in height and two in width results in a 16x16
cube shape although a circular shape has also been proposed
by the authors as a possible normalization window. See Listing
4 for the block normalization loop.

The authors cite multiple ways of performing it such as
using L2 normalization, L2-Hys which is L2 normalization
followed by clipping and then normalized again, L1 normal-
ization and L1 normalization followed by square root. For the
implementation L2-Hys was used, Listing 5 depicts functions
used for the normalization and value clipping. The final HOG

descriptor selection is not a discrete step in itself but is already
done in the L2blockNormalization() function as the last step,
as depicted in Listing 4.

Listing 4. L2 Block Normalization
void HOG::L2blockNormalization() {
for (int y = 0; y < cellsY - 1; y += 1) {

for (int x = 0; x < cellsX - 1; x += 1) {
std::vector<std::vector<float>> window;
// Fetch the 2 by 2 window of cells and its

divisor
for (int width = y; width < y +

cellsPerWindow_H; ++width) {
for (int height = x; height < x +

cellsPerWindow_H; ++height) {
auto cell = histogram.at(width).at(height)

;
window.push_back(cell);

}
}

L2norm(window);
clipNumber(window);
L2norm(window);

// Add the normalized values to the final 1D
descriptor

for(auto i : window) {
for(auto j : i) {
descriptor.push_back(j);

}
}

}
}

}

Listing 5. L2 Normalization and Clipping
void HOG::L2norm(std::vector<std::vector<float>> &

input) {
// L2 Divider
float sum = 0;
for(auto &i : input) { // for each cell

for(auto &j : i) { // for each histogram
sum += j * j;

}
}

// Divide each cell in input
for(auto &i : input) {

for(auto &j : i) {
j /= sqrt(sum);

}
}

}

void HOG::clipNumber(std::vector<std::vector<float>>
&input) {

// Clip each cell to 0.2
for(auto &i : input) { // for each cell

for(auto &j : i) { // for each histogram
if(j > 0.2) {
j = 0.2;

}
else if(j < 0) {
j = 0;

}
}

}
}

A. Evaluation of the Implementation

After the implementation was done, it was evaluated for
functionality as well as performance using quantitative met-
rics. The reference implementation against which the code is
benchmarked is the HOG Descriptor as part of the OpenCV
framework [6]. For performing statistical analysis, the choice
of programming language was Python due to its simplicity and
speed of prototyping.

1) Computing HOG Features using OpenCV: OpenCV
HOGDescriptor object was initialized with the same settings
that the implementation described in this paper is using, see
Listing 7. The full descriptor is written to a text file for further
post-analysis in Python.

Listing 6. Computing HOG With OpenCV
void HOG::computeAndPrintOpenCV() {
std::vector<float> desc;
std::vector<cv::Point> locations;
auto winSize = cv::Size(64, 128);
auto blockSize = cv::Size(16, 16);
auto stride = cv::Size(8, 8);
auto cellSize = cv::Size(8, 8);
auto padding = cv::Size(0, 0);

// Compute
auto HOGopenCV = cv::HOGDescriptor(winSize,

blockSize, stride, cellSize, numBins);
HOGopenCV.compute(inputImgGray, desc, stride,

padding, locations);

// Write to .txt file
writeToFile("HOG_openCV.txt", desc);

}

2) Analysis with Python: Mean and the standard deviation
is computed and compared between the reference and test
descriptors as shown in Table 1. Furthermore, a two-sample
Mann-Whitney U test is performed on both data sets that
showed that the descriptors have statistical differences in them.

TABLE I
COMPARISON OF REFERENCE AND TEST HOG IMPLEMENTATIONS

Vector Length Mean Std.Dev
HOG Test 3780 0.13174 0.10209
HOG OpenCV 3780 0.13872 0.09195

Listing 7. Computing Statistical Differences with SciPy
def testPerformMannWhitneyU(mine, opencv):

output = scipy.stats.mannwhitneyu(mine, opencv)
alpha = 0.05
if(output.pvalue < alpha):

print(f"MannWhitneyU: Reject H0, pvalue = {
output.pvalue}")

else:
print("MannWhitneyU: Fail to reject H0,

pvalue = {output.pvalue}")

>>>> pvalue == 2.1114310054911054e-07

A performance comparison was done with both C++ imple-
mentations as well as OpenCV Python implementations. Aver-
age elapsed time was measured for the HOG feature computa-
tion using identical settings in all three implementations. The
computations were repeated for a total of 100000 iterations.
Pre-processing such as loading the image and converting it to

grayscale is not part of the operations when performing the
measurements. Table 2 depicts average time of execution for
the main computing function. Function used for C++ profiling
is depicted in Listing 8 and for Python in Listing 9. When
profiling, the C++ build config was set to Release.

TABLE II
OVERVIEW OF PERFORMANCE FOR ALL THREE HOG IMPLEMENTATIONS

OVER 100000 ITERATIONS

Time per iterations(ns) Total Time(s)
HOG Test 1.2633e-09 12.6331
HOG OpenCV 1.64109e-09 16.4109
HOG pyOpenCV 2.11454e-09 26.6

Listing 8. Computing HOG With OpenCV
void profileFunction(std::function<void()> func, int

iterations, std::string name) {
double totalTimeTaken = 0.0;
for (int i = 0; i < iterations; i++) {

auto start = std::chrono::
high_resolution_clock::now();

func();
auto end = std::chrono::

high_resolution_clock::now();
totalTimeTaken += std::chrono::duration_cast

<std::chrono::nanoseconds>(end - start).
count();

}

// Convert timePerIteration to nanoseconds and
print it

std::cout << name << " Time per iteration: " <<
totalTimeTaken / iterations << " nanoseconds
" << std::endl;

// Convert total time taken to seconds and store
it in a new variable and print the new
variable

double totalTimeTakenInSeconds = totalTimeTaken
/ 1000000000.0;

std::cout << name << " Total time taken: " <<
totalTimeTakenInSeconds << " seconds" << std
::endl;

std::cout << name << " Total time taken: " <<
totalTimeTaken << " ns" << std::endl;

}

Listing 9. Computing HOG With OpenCV
averageTime = 0
totalTime = 0
for i in range(profileIterations):

start = cv2.getTickCount()
main(False, image)
end = cv2.getTickCount()

timesElapsed = (end - start) / cv2.
getTickFrequency()

averageTime += timesElapsed
averageTime /= profileIterations
totalTime += timesElapsed

Write time elapsed to a file
with open(os.path.join(FOLDER_DATA_DESCRIPTORS,

"pyHOG_times.txt"), ’a’) as f:
f.write(f"{timesElapsed} ")

print(averageTime)
print(totalTime)
}

III. CONCLUSIONS

The implementation of the original HOG publications out-
puts a feature vector with statistically different values for
the same input when compared to a production-grade im-
plementation of the same algorithm. This could be due to
certain low-level optimizations implemented in OpenCV or
missing processing steps in the original implementation that
would not correctly calculate the feature vector. Matching
lengths of the feature vectors and similar mean, and standard
deviation values can serve as a sanity check that number of
features are correctly extracted although certain steps during
the processing may be missing which would explain why
the original implementation profiles faster than OpenCV one.
Overall, the evaluation shows that the original contribution is
very likely to have implementation issues and it should not
be used in a production environment before the codebase has
undergone thorough troubleshooting.

REFERENCES

[1] Sandeep Kumar, Zeeshan Khan, and Anurag Jain. “A
Review of Content Based Image Classification using
Machine Learning Approach”. English. In: International
Journal of Advanced Computer Research 2.3 (Sept.
2012). Copyright - Copyright International Journal of
Advanced Computer Research Sep 2012; Last updated
- 2016-03-19, pp. 55–60. URL: https : / /www.proquest .
com/ scholarly - journals / review- content - based - image -
classification-using/docview/1198000536/se-2.

[2] Navneet Dalal and Bill Triggs. “Histograms of oriented
gradients for human detection”. In: 2005 IEEE computer
society conference on computer vision and pattern recog-
nition (CVPR’05). Vol. 1. Ieee. 2005, pp. 886–893.

[3] Peter A. Torrione et al. “Histograms of Oriented Gra-
dients for Landmine Detection in Ground-Penetrating
Radar Data”. In: IEEE Transactions on Geoscience and
Remote Sensing 52.3 (2014), pp. 1539–1550. DOI: 10.
1109/TGRS.2013.2252016.

[4] Peter A. Torrione et al. “Histograms of Oriented Gra-
dients for Landmine Detection in Ground-Penetrating
Radar Data”. In: IEEE Transactions on Geoscience and
Remote Sensing 52.3 (2014), pp. 1539–1550. DOI: 10.
1109/TGRS.2013.2252016.

[5] O. Déniz et al. “Face recognition using Histograms
of Oriented Gradients”. In: Pattern Recognition Letters
32.12 (2011), pp. 1598–1603. ISSN: 0167-8655. DOI:
https : / / doi . org / 10 . 1016 / j . patrec . 2011 . 01 . 004. URL:
https : / / www . sciencedirect . com / science / article / pii /
S0167865511000122.

[6] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s
Journal of Software Tools (2000).

