
Comparative Study of Warren Truss Bridge
Structural Integrity

1st Ernests Lavrinovics
MED08, Aalborg University

Copenhagen, Denmark
elavri21@student.aau.dk

Abstract—In this work, the efficiency of truss in structural
mechanics is investigated, with a focus on Warren-type truss for
bridge design. A simulation was conducted between two models,
one with and one without truss respectively, and was modelled
as a linear elasticity problem by applying uniform weight until
the structure material reaches its yield point. The results show
that optimizing a bridge model with planar, Warren-type truss
results in an improvement of almost 6 times when compared
to a model without diagonal truss members. This confirms the
theory that a truss is an efficient method of distributing the load
on a structure. The improvements are presented using qualitative
and quantitative data gathered from running a condition sweep
simulation.

Index Terms—Finite-Element Method, Civil Engineering,
Structural Mechanics, Truss Elasticity Modeling

I. INTRODUCTION

The weight of a structure plays an important role in the
technical design of mechanical structures. Whether it may be
aeroplanes, buildings, bridges, or automobiles, the produced
artefact carries its own weight which is an added cost that
can be minimized by practising smarter design principles.
Aeroplanes and cars will consume more fuel and add to
more operational costs if weight is not optimized. Buildings
and bridges will require more construction material that will
add extra stress to themselves to achieve greater structural
integrity if the design of the artefact is not optimized for shape
and topology [1]. Such optimizations can be simulated using
computer-aided design (CAD) models of a given artefact and
the finite element analysis (FEA) method.

Truss bridges have been designed and built for centuries
in North America and around the world. Their efficient and
sturdy design allows loads to be evenly distributed throughout
the structure by axial forces. Two of the most common truss
bridge designs are Warren and Pratt [2], as depicted in Figure
1.

(a) Warren Truss (without vertical
beams), figure from [3] (b) Pratt Truss, figure from [3]

Fig. 1: Truss Types

This specialized field of optimizing weight through build
design is known as lightweight engineering [1]. The following

work scopes down on the evaluation and comparison of two
bridge designs using a common structural analysis method
called linear elastic analysis (LEA) [4] and FEA to model the
stress. This study aims to investigate the efficiency of truss-
based bridge design through a comparison of two different
bridge models, one with and one without diagonal Warren-
type truss, as depicted in Figures 4 and 5. [5] [1] [6]

II. THEORETICAL BACKGROUND

A. Analysis of Force Distribution in Planar Truss Structures

Two and three-dimensional truss structures are combined
using one-dimensional members by creating triangular patterns
for 2D and tetrahedral for 3D. The points of connection
are referred to as joints through which the compressing and
tensing forces distribute throughout the structure [3]. This
results in a rigid pattern which has the nature of distributing
the forces throughout itself in a uniform, axial fashion.

As trusses are components of larger structures such as
buildings or bridges, the analysis of truss forces is based on
the concept of structural idealization that determines its main
components to model how forces are transmitted throughout
[3]. For the truss bridge depicted in Fig. 4, the key components
are two planar trusses, bracing at the top, and the flooring.

A basic analysis of planar truss is based on the simplifica-
tions that ensure forces in the truss members are axial [3].

• Loads and displacement is applied only on nodes
• Each member is straight and is arranged such that the

centre of its axis lines up with the connecting node
• Nodes are connected with pins meaning that members

can rotate
1) Method of Joints - Planar Truss: Each joint of a truss

structure is subjected to concurrent forces. Equilibrium of 2D
concurrent forces is expressed by following two functions,
the sum of all forces in X-Y directions is equal to 0. The
consequence of this is that, at most, two force unknowns can
be solved for a particular joint.∑

Fx = 0
∑

Fy = 0 (1)

The approach for the method of joints is to traverse the
structure from joint to joint, starting with the free-body
diagram of a joint that has two unknowns, solving these
unknowns and then proceeding to the next eligible joint while
using the acquired force to aid the next calculation.



B. Common Construction Material for Metal Bridges

During the mid-late 19th century, steel was invented as a
more stronger material than iron. The first all-steel truss bridge
in USA was constructed in 1879 for the Chicago and Alton
Railroad [3]. Steel has been the dominant material of choice
for truss bridges until the about mid-20th century, after which
cable-stayed and segmented concrete designs emerged as com-
petitors [3]. Based on this information, the comparative study
will assume that the truss-bridge models are also constructed
out of steel, due to it being the dominant material of choice
during the era of truss-based bridge designs. Specifically, the
AISI 1020 cold-rolled steel alloy will be taken as the reference
material [7].

C. Structural Stability

If the number of reactions is insufficient to resist forces
applied to a structure to satisfy the equilibrium conditions, the
structure is said to be initially unstable. Even if a structure
is adequately supported, it may still be initially unstable if
the members are not properly connected to provide sufficient
internal forces to resist the applied external force [3]. Consider
Fig. 2(a), it shows a rectangular structure to which force P
is applied and is considered instable. Fig. 2(b, c) depict the
same rectangular structure that is stabilized by an additional
diagonal element.

Fig. 2: Illustration of three structures with varied stability.
Bottom left corner of each rectangle is fixed and bottom right
corner is connected to a roller [3].

D. Maximum Distortion Energy Theory

Maximum Distortion Energy Theory is a theory of failure
also known as von Mises yield criterion. It is the most popular
failure theory for predicting yielding for ductile materials, and
it states that a material yields once the maximum distortion
energy equals the distortion energy at the yield point in a uni-
axial tension test [5]. For the structural evaluation, maximum
distortion energy will be used as the failure theory.

It is described mathematically by the following formula

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 = 2σ2

yp (2)

where:

σ1,2,3 = three mutually perpendicular principal stresses
σyp = stress at yield point

E. Load Limit for Ductile Materials

A primary concern for designing structures is to estimate the
amount of load that it can take before losing stability. This
is done through identifying the load extremes and ensuring
that the forces subjecting the structure satisfy the conditions
for equilibrium. For truss, the instability can occur due to
material failure which is described using a stress-strain curve
[3]. Different stages of material stress are illustrated in Fig. 3.

Fig. 3: Illustration of a stress-strain curve for ductile materials
[5].

Fig. 3 shows that the initial stress of ductile material changes
linearly as strain is applied up to the yield point, whose linear
behaviour is also described by Young’s modulus [5]. Point
’e’ is the elastic limit up to which the material recovers its
original shape, for most materials points ’p’ and ’e’ are nearly
identical. The stress at which the upper yield point is reached
is when the material permanently deforms and is considered
the point of failure [5]. In practice, the maximum allowed
strain is limited to a multiple of yield strain which is called
the ductility ratio and, for linear modelling, is a multiple of 5
[3].

This lays the foundation for determining the threshold of
maximum allowed weight during the structural analysis in
Section IV.



F. Finite Element Analysis

The finite element analysis (FEA) is a numerical technique
used for solving partial differential equations by approximating
a solution for given boundary conditions. Since modelling
using a pen-and-paper approach oftentimes include dramatic
simplification and idealization, the FEA is a strong analysis
method because it allows working with design geometry with
higher accuracy. Civil engineers use FEA for the analysis of
beams, frames, fluids and others [8].

FEA works by reducing basic unknowns to a finite number
by dividing the solution region into smaller parts called
elements and expressing field variables as approximating func-
tions for each element [8]. For solid mechanics, this can be
expressed as:

[k]eδe = Fe (3)

where:
[k]e = element stiffness matrix
δe = nodal displacement vector of the element
Fe = nodal force vector

III. OVERVIEW OF THE IMPLEMENTATION

For the FEA, Matlab was used with its proprietary Partial
Differential Equation Toolbox framework that provides useful
abstractions for performing the simulation by solving partial
differential equations, importing 3D models and visualizing
the output [9]. Due to the near-linear behaviour of stress-strain
for ductile materials up until the yield point [5], the simula-
tion is modelled as a linear problem. Due to computational
restraints, the models were imported and discretized by Matlab
with a maximum element size of 1m and a minimum of 0.5m.

Two identical bridge models were imported in Matlab for
processing with the only difference that one model has Warren
type trussing and the other does not have any triangular truss
members, see Figures 4. and 5. The evaluation is performed by
analysing the maximum load that the structures can take before
reaching permanent deformation (yielding). The simulation
is stopped once at least one finite element of the structure
has been approximated to the previously stated material stress
point. To better illustrate the total force that both structures can
take up before yielding, gravity is neglected for the simulation.
As for the material properties, they were set as per an online
database for the AISI 1020 steel alloy [7]. As the boundary
conditions, both ends of the model were fixed.

Condition sweep with the weight parameter was done to
determine the limits of the structure. The simulation started
with 0N and was incremented with a step size of 980N, ap-
proximately 100kg of mass. The weight was applied uniformly
to the flooring of each model.

A. Bridge Models

The bridge model with trussing was obtained from an open-
source resource [10]. Further modifications to remove the
diagonal trussing were made using Blender 3D modelling
software. Both bridge dimensions are 84.4x20x20m (LxWxH),

with vertical beams of 16.4x1x1.73m; diagonal truss members
at 23.2x1x2.53m

(a) Perspective view (b) Side view

Fig. 4: Bridge Model with Diagonal Trussing

(a) Perspective view (b) Side view

Fig. 5: Bridge Model without Diagonal Trussing

IV. RESULTS AND EVALUATION

The simulation of the two models was run and weight
values were noted once at least one element of the structure
had reached the yielding point, an overview of the results is
presented in Table I.

TABLE I: Overview of the weight applied to the models when
yielding is reached

With Truss Without Truss
Yield point (3MPa) 639’940(N) 107’800(N)

Fig 6 depicts a plot of applied weight on both structures and
their corresponding maximum stress. The results show that the
model without truss has a substantially lower weight that it can
carry. The yield point is reached when approximately 108kN
of weight has been applied, or approximately 11 tons of mass.

On the contrary, the truss bridge model substantially exceeds
the performance in terms of weight that can be carried until
yielding of approximately 640kN. The truss model also has
a more gentle growth of maximum stress per element while
applying the weight as depicted in Fig. 6. This means that
optimizing the bridge structure with Warren-type truss yields
approximately an improvement of 6 times.



Illustration of the simulations once both the structures have
yielded are depicted in Figures 7 and 8. The deformation
is scaled five times for better illustration. Figures 8 and 7
show that the model with truss distributes the weight more
uniformly, whereas the model without truss has more highly
concentrated pressure points.

Fig. 6: Plot of the maximum stress of the structure over weight
applied for both models.

(a) Perspective view (b) Side view

Fig. 7: Bridge model without diagonal trussing with approxi-
mately 108kN of force applied to it.

(a) Perspective view (b) Side view

Fig. 8: Bridge model with diagonal trussing, with approxi-
mately 640kN of force applied to it.

The greater uniform force distribution is also depicted in
the histograms plots in Figures 9 and 10 respectively. It is
prominent that the model with truss, has a more even number
of stress occurrences per bin, as opposed to the model without
truss.

Fig. 9: Histogram overview of stress for bridge model without
truss

Fig. 10: Histogram overview of stress for bridge model with
truss



V. CONCLUSIONS

This work investigates the efficiency of truss in structural
mechanics, more specifically Warren-type truss for bridge
design. The results show an improvement of almost 6 times
when optimizing a structure with a planar, Warren-type truss.
This confirms the theory that truss is an efficient method of
distributing the load on a structure, the improvements are
presented using qualitative and quantitative data.

The simulation performed in this work should not be used
as an architectural recommendation, as it does not consider
any safety margins on the structure as per common practise
in structural engineering. As well as it also does not consider
additional stresses that may occur in real-life, such as non-
uniform weight distribution, gravity, or other longitudinal
forces that may occur due to wind or earthquakes.

This work can further expand on modelling the problem as
a non-linear elasticity problem and further investigating the
structural integrity and using other material failure theories.
The simulation could be continued up until the ultimate
strength point of the structure as well as a complete rupture of
structural members. Also, a comparative study can be carried
out to compare how different truss patterns compare to a
uniformly and non-uniformly distributed weight on a bridge
flooring.
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