
Comparative Study of NLP Adversarial Attack Frameworks Against a
BERT-Based Textual Entailment Model

Ernests Lavrinovics
University of Copenhagen
lfc161@alumni.ku.dk

Abstract

Deep learning models can provide incredible
results although when impaired through adver-
sarial attacks, they can quickly crumble. This
work shows the effects of two fundamentally
different adversarial attack frameworks namely
Universal Adversarial Triggers(Wallace et al.,
2019) and TextFooler(Jin et al., 2019), and their
effects on DestilBERT model fine-tuned on
Fever dataset for sequence classification prob-
lem. The result shows that both attacks are
efficient and can make the model virtually un-
usable as the predictions are heavily skewed.
The results do not quite correlate with previous
research done within the field as they do not
give much insight into how the model works,
although this is attributed to potential flaws in
the methodology when obtaining the results.
Overall this work demonstrates the motivation
for adversarial training to defend against ad-
versarial attacks and shows also that both at-
tack frameworks themselves can be further im-
proved.

1 Introduction

Deep learning can yield impressive results and in
certain cases even outperform humans1. Never-
theless, deep learning models are still vulnerable
to perturbations that manipulate a model’s output.
These perturbations are called adversarial attacks
(Kurakin et al., 2017) and earlier works originate
from the image-processing domain where they have
proven to be effective by introducing noise to an
image (Szegedy et al., 2013), or even changing a
single pixel (Su et al., 2019). Contrary to images,
text tokens are a discrete media format although
work has still been done to also perform adversarial
attacks on NLP models. Notably by using gradient-
guided searches for trigger tokens (Ebrahimi et al.,
2018), and expanding on that work by using uni-
versal, input-agnostic tokens (Wallace et al., 2019),

1https://rajpurkar.github.io/SQuAD-explorer/

or by using search-based approaches (Jin et al.,
2019). Comprehensive software frameworks have
also been developed for adversarial attacks (Mor-
ris et al., 2020; Zeng et al., 2021a) that deliver
multiple attack methodologies, model training and
data augmentation in a production-grade software
package. The development of such attack frame-
works democratizes and improves the quality of
the trained models as they allow research groups
to perform analysis using different attack method-
ologies that each may uncover otherwise unnoticed
vulnerabilities of their NLP models, this inspires
a new model training paradigm called adversarial
training (Kurakin et al., 2017).

It is important to also consider the security im-
plications of adversarial attacks and, generally, the
incorrect output of machine learning models. There
are cases of bypassing spam filters (Biggio et al.,
2013), manipulating fake news detection (Zhou
et al., 2019) or even people being taken to jail for
incorrect machine translation (He et al., 2020).

Natural language inference (NLI) is a task in
natural language processing (NLP) that involves
determining whether a given hypothesis h can be
inferred from a given premise p, as depicted in the
following example (Chen et al., 2017), the premise
entails the hypothesis.

p: Several airlines polled saw costs grow more
than expected, even after adjusting for infla-
tion.

h: Some of the companies in the poll reported
cost increases.

Many well-established NLI datasets (Thorne
et al., 2018; Bowman et al., 2015; Williams et al.,
2018; Aly et al., 2021) allow for data-driven ap-
proaches for performing model training for NLI.
Similarly, leveraging language models (Devlin
et al., 2018a) and modern ML-Ops frameworks
(Wolf et al., 2019), allows the possibility to fine-
tune them on downstream tasks (Wolf et al., 2019;

Jiang and de Marneffe, 2019; Liu et al., 2021;
Atanasova et al., 2020; Lee and Hsiang, 2020).

The goal of this project is to perform an analysis
of a monolingual language inference model by us-
ing adversarial attacks and exploring the model’s
vulnerabilities and weaknesses.

2 Background

2.1 Language Inference
The idea of natural language inference or textual
entailment is to reason about the directional rela-
tionship between a piece of text and a hypothesis.
For humans, this may come intuitively as we make
conclusions based on our world-knowledge and un-
derlying reasoning process often called as common
sense (Storks et al., 2019). For machines, common-
sense reasoning for a long time has been considered
a non-trivial problem, although recent advances in
language modelling have shown remarkable results
for logical reasoning by closed-source models (Sus-
njak, 2022) (Qiao et al., 2022).

Normally textual entailment is framed as a clas-
sification problem where a model predicts one of
the multiple labels that describe the directional re-
lationship. All modern language inference training
pipelines use deep learning and their usual compo-
nents are shown in Figure 1.

Figure 1: Common components in neural-based model
training pipelines (Storks et al., 2019)

Word representation via numerical vectors is a
core part of performing machine learning. Em-
beddings such as Word2Vec(Mikolov et al., 2013)
and GloVe(Pennington et al., 2014) are context-
independent meaning that they have fixed values
for certain words. This is important to note be-
cause languages are non-linear and have ambigu-
ities, therefore context-dependent representations

have been developed to address this problem (De-
vlin et al., 2018b). These representations can be
used as features or fine-tuned for downstream tasks
(Storks et al., 2019).

Neural network architectures are designed for
different downstream applications. For language
inference, it is important to capture long-term de-
pendencies which can be done with transformers
(Vaswani et al., 2017) and LSTMs (Hochreiter and
Schmidhuber, 1997) (Storks et al., 2019).

Textual entailment in itself can also be used for
downstream tasks, for example fact-checking by
predicting whether a claim can be supported or
denied given a list of sources. Research suggests
that the average time of fact-checking a typical ar-
ticle is about a day (Hassan et al., 2015) and fake
news poses threats to the integrity of journalism,
creates turmoils in the political world (Wang, 2017)
and even is attributed to mass shootings2. So all
things considered, the amount of information and
the speed at which it can spread through the inter-
net creates a need for robust language inference. A
more detailed overview of fact-checking is avail-
able in two recent surveys (Zeng et al., 2021b; Guo
et al., 2022).

2.2 Datasets

A well-established, highly used and studied dataset
SNLI (Bowman et al., 2015) contains about 500k
sentence pairs as datapoints that are crowd-sourced.
The dataset was generated by asking Amazon Me-
chanical Turk workers to write a hypothesis for
contradiction, entailing or neutral labels. During
the generation of the dataset, the authors also en-
sured a validation step in which four other workers
had to agree on the correct labels for a given hy-
pothesis.

Another popular, crowdsourced dataset
MultiNLI (Williams et al., 2018) contains about
430k sentence pairs of multiple genres (fiction,
travel, government, others).

Similarly, dataset Fever (Thorne et al., 2018)
is also a collection of premise-hypothesis-label
triplets that have been crowd-sourced by hu-
man workers augmenting sentences derived from
Wikipedia and subsequently verified.

All three of the aforementioned datasets have
been critiqued for containing spurious correlations
between bi-grams in the hypothesis and their cor-

2http://www.nytimes.com/2016/12/05/business/media/comet-
ping-pong-pizza-shooting-fake-news-consequences.html

responding labels and suggest that models trained
on these datasets do not perform genuine reasoning
based on provided evidence (Schuster et al., 2019;
Gururangan et al., 2018; Tan et al., 2019; Wallace
et al., 2019). This suggests a general pattern of
crowd-sourcing creating annotation artifacts.

2.3 Adversarial Attacks

Adversarial attacks are an active research field
within the NLP community with two recent surveys
providing a detailed overview of the field (Roth
et al., 2021; Qiu et al., 2022).

Gradient-based adversarial attacks have been
popular, with earlier work (Ebrahimi et al., 2018)
using an approach to estimate how much a re-
sult changes, when certain triggers are appended
to a sequence, this is called the Hotflip algo-
rithm. Further work Universal Adversarial Trig-
gers (UAT)(Wallace et al., 2019) builds upon this
knowledge to generate input-agnostic triggers that
are one-solution fits all and manipulate the output
irrespective of the input sequence. The UAT frame-
work also assumes white-box access to the victim
model for performing the gradient-based search.
The task of a universal attack is summarized as
follows:

argmintadv Et∼T [L(ỹ, f(tadv; t))]

Where a task-dependant loss-function L is mini-
mized against a target-label ỹ and output of a model
f, given a trigger and input (tadv; t) over the whole
dataset Et∼T .

While the UAT framework is powerful from the
perspective of its universal setting, it may not be
as subtle when processed input is reviewed by hu-
mans. Meaning that semantics break by adding
non-logical or grammatically questionable triggers
to the input. The problem of retaining seman-
tics is approached in the TextFooler publications
(Jin et al., 2019) by estimating the most important
words within the input and substituting them with
context-independent synonyms until the model’s
output changes. The word importance is deter-
mined by the amount of change in the prediction
that it makes when it is deleted during the search-
stage. Contrary to the UAT framework, TextFooler
does not assume white-box access to the victim
model. Listing 1 depicts an example of TextFooler
modifications.

Before
P: Bermuda Triangle is in the western part of
the Himalayas
H: The Bermuda triangle , also known as
the Devil ’ s Triangle , is a loosely - defined
region in the western part of the north atlantic
ocean , where a number of aircraft and ships
are said to have disappeared under mysterious
circumstances.
Res: Refutes (63.13%)

After
P: bermuda triangle is in the western part of
the himalaya.
H: the bermuda triangle , also known as the
devil ’ s triangle , is a loosely - defined region
in the western part of the north atlantic ocean
, where a number of aircraft and ships are
said to have disappeared under mysterious
circumstances .
Res: Not Enough Info (79.66%)

Listing 1: Example of TextFooler manipulating the in-
put. Underlined token represents the TextFooler modifi-
cations; Premise(P), Hypothesis(H), Result(Res)

2.4 Adversarial Training

The idea to employ adversarial perturbations as part
of the training dataset is called adversarial training
(Madry et al., 2018). In recent years, this technique
has been employed in NLP, image processing
and audio processing, and has proven to improve
the robustness of the models (Jin et al., 2019;
Morris et al., 2020). The task can be summarized as

argminθ E(x,y)∼D

[L(θ, x, y) + αL(θ,A(θ, x, y), y)]

Where L(θ, x, y) represents the loss-function for
a model, text x and label y. A(θ, x, y) represents
the adversarial attack that produces xadv and α can
be used to weigh the adversarial example (Yoo and
Qi, 2021).

3 Methodology

3.1 Dataset

The dataset used in the experiment was Fever
(Thorne et al., 2018) in a modified format3 with
hypothesis-premise-label triplets, thus making the

3https://huggingface.co/datasets/pietrolesci/nli_fever

Class Unbal (Train) Bal (Train) Bal (Dev)
Supports ∼123k 7.5k 450
NEI ∼35k 7.5k 450
Refutes ∼49k 7.5k 450
Total ∼208k 22.5k 1.35k

Table 1: Overview of Fever dataset before and after bal-
ancing. Note: NEI refers to "Not Enough Information"

data retrieval very easy. The preference for Fever is
motivated due to it being a well-established, simple
and popular dataset for NLI tasks, with general-
domain data points.

The training split contains over 200k data points
and is not balanced, hence balancing was per-
formed by down-sampling each class for both train-
ing and development. Table 1 summarizes the
Fever datapoint counts before and after balancing,
the development set was drastically downsampled
to 1.35k datapoints across all labels, mainly due
to the adversarial attacks requiring a lot of compu-
tational power and hence running them through a
larger dataset becomes infeasible given the compu-
tational resources available. See Appendix A.1 for
the training script which also includes the dataset
balancing function.

3.2 Model Fine-Tuning

A subset of a BERT (Devlin et al., 2018b) model
DistilBERT4 was fine-tuned on the previously de-
scribed dataset for a sequence classification task.
The motivation for using the DistilBERT was due
to its lightweight size and saving computational re-
sources when compared to the base or large model.
HuggingFace MLOps framework was used to per-
form the training with the hyperparameters shown
in Table 2.

LearnRate BatchSize Epochs DropoutProb
0.001 64 10 0.25

Table 2: DestilBERT fine-tuning hyperparameters

3.3 Adversarial Attack Framework

The OpenAttack (Zeng et al., 2021a) was used as it
combines many different attack methodologies in
a single package and it integrates seamlessly with
the HuggingFace MLOps platform. The frame-
work had issues with out-of-date SSL certificates

4https://huggingface.co/distilbert-base-uncased

and also did not provide means to control hyper-
parameters from user-side code for the Universal
Adversarial Attack, hence modifications were to
the framework were made5. UAT attack was run
using a beam-search of size 3 over 2 epochs.

Two attacks were used, primarily Universal Ad-
versarial Triggers, and TextFooler (Jin et al., 2019)
due to them both being distinctively different with
chances of exposing different kinds of vulnerabili-
ties.

4 Results

In order to provide a test-bed for the adversarial at-
tacks and make the results more prominent, a model
needs to perform better than a random-guess prob-
ability. Further sections show the baseline model
results, as well as the results of successful impair-
ments on the model by deploying the adversarial
attacks.

4.1 Model Fine-Tuning
The baseline model was trained and a model card
was published on HuggingFace6. After fine-tuning
on the training split described in Table 1 over 10
epochs, the baseline results of the development
split are summarized in Table 3 per each label. The
confusion matrix is presented in Figure 2, it shows
the majority of labels being correctly predicted,
with a higher confusion between Not Enough Info
label and Refutes or Support labels. Confusion
between Support and Refutes is minimal.

Label precision recall f1-score
Supports 0.77 0.79 0.78
NEI 0.60 0.73 0.66
Refutes 0.80 0.60 0.68

Table 3: Overview of baseline model results. Note: NEI
refers to "Not Enough Information"

4.2 Attack: Universal Adversarial Triggers
(UAT)

When running the OpenAttack framework over the
development dataset, the UAT attack estimated a
trigger emia nothing segments although after man-
ually removing the emia token the results were
even more impaired disregarding that there’s one
token less in the trigger. So the final trigger used
for obtaining the results is nothing segments.

5https://github.com/ernlavr/OpenAttack
6https://huggingface.co/ernlavr/destilbert_uncased_fever_nli

Figure 2: Confusion matrix of the baseline model

Figure 3 summarizes the confusion matrix and
Table 4 depicts the F1, recall and precision results.
The results show that the trigger successfully and
heavily skews all predictions towards Refutes label,
it has nearly removed the possibility of estimat-
ing Supports label, therefore the model is heavily
impaired. Listing 2 depicts an example how the
trigger changing the output of the classifier.

Without trigger
P: The Endless River, which was released in
2014 is Pink Floyd’s final studio album.
H: Pink Floyd . The final Pink Floyd studio
album , The Endless River (2014) , was
recorded without Waters and based largely
on unreleased material . The Endless River
is the fifteenth and final studio album by the
English rock band Pink Floyd .
Res: Supports

With trigger
P: nothing segments The Endless River,
which was released in 2014 is Pink Floyd’s
final studio album.
H: Pink Floyd . The final Pink Floyd stu-
dio album , The Endless River (2014) , was
recorded without Waters and based largely on
unreleased material . The Endless River is the
fifteenth and final studio album by the English
rock band Pink Floyd .
Res: Supports -> Refutes

Listing 2: Example of before-after applying the trigger
"nothing segments"; Premise(P), Hypothesis(H), Re-
sult(Res)

Label precision recall f1-score
Supports 0.71 0.01 0.02
NEI 0.67 0.32 0.43
Refutes 0.35 0.88 0.50

Table 4: Overview of UAT results with nothing segments
trigger applied to inputs

Figure 3: Confusion matrix for "nothing segments" trig-
ger

4.3 Attack: TextFooler
Results for the TextFooler attack are presented in
Table 5 and Figure 4. In this case, the attack ma-
nipulates the model to output more neutral labels,
still significantly reducing its performance. Quanti-
tative overview examples are present in Appendix
A.4

Label precision recall f1-score
Supports 0.11 0.04 0.06
NEI 0.27 0.52 0.35
Refutes 0.28 0.20 0.23

Table 5: Overview of TextFooler results

4.4 PMI Score Top Tokens
Pointwise Mutual Information was computed be-
tween unigrams and labels to investigate how cer-
tain words overlap with labels as per (Gururangan
et al., 2018) but without the Add-100 smoothing. A
summary of the highest PMI scores per each token
from the training set is summarized in Table 6 and
a more detailed overview is available in Appendix
A.3.

Figure 4: Confusion matrix for the outputs of TextFooler
attack

The formula for the PMI calculation is shown
below:
PMI(X,Y) = log2

P (X,Y)
P (X)P (Y)

Where:
X : Unigram
Y : Label

P (X,Y) : Joint-probability X-Y
P (X) : Marginal-probability X
P (Y) : Marginal-probability Y

Supports NEI Refutes
mundo ##rud ##skaya
speechless recipe fairchild
essen cried 1749
cardinal theologian 1833
ethical ##test ngos
projected deacon ##oun
deteriorating exceeded ##eous
headline : abby
psyche sonora maximilian
##itors breeders relation
supportive ##mx ##ologies
straightforward ##cross goofy
englishman bikes rumors
modes adventist speculation
skins stalled gibbs

Table 6: Highest scoring PMIs per label

4.5 Word Substitutions

For the TextFooler an overview was made of the
synonyms and their count, that the tokens from the
original were substituted to. Due to a code bug
during result generation, the information could not
be fully retrieved from a serialized data structure

created during result-generation, hence because of
varied sequence lengths and punctuation that did
not allow for a 1:1 mapping of the original to the
adversarial text, also all of the data points were
not saved. Full-raw data is available in the sup-
plement to this submission. Nevertheless, approxi-
mately 500 out of 1350 examples were usable and
an overview of the word substitution frequencies
are in Table 7.

Supports NEI Refutes
(’get’, 6) (’record’, 12) (’celluloid’, 6)
(’have’, 6) (’celluloid’, 11) (’motion’, 4)
(’moving’, 5) (’comport’, 10) (’individual’, 4)
(’playscript’, 4) (’cinema’, 7) (’play’, 4)
(’realm’, 4) (’ground’, 7) (’get’, 3)
(’record’, 3) (’set’, 5) (’house’, 3)
(’lead’, 3) (’play’, 5) (’innate’, 3)
(’let’, 3) (’pic’, 5) (’corner’, 3)
(’hold’, 3) (’pretend’, 5) (’moving’, 2)
(’turn’, 3) (’decease’, 5) (’robert’, 2)

Table 7: SubstitutionToken-Frequency pairs that were
used to obtain the target labels

5 Analysis and Conclusions

Overall the adversarial attacks were able to success-
fully impair the model making it virtually unusable
for production in both cases of the attack. The
presented results partially support the claim that
the model learns spurious correlations; at least as
far as the PMI calculations and token-frequency
pairs go, although this is attributed to potential mis-
takes done during the result generation. The univer-
sal trigger nothing segments performed remarkably
well, as shown in Figure 3 although neither of the
tokens were present in the top 10-25 highest PMI
scores. A different token sequence recipe cried
summarized also performed very well, as shown
in Appendix A.2 and this was taken directly from
Table 6.

The TextFooler attack proved to skew the results
heavily towards N.E.I. label. While most of the
manipulations appeared to have preserved the se-
mantics, some examples had also skewed semantics
showing that the framework can still be further im-
proved, see Appendix A.4. The token-frequency
pairs do not directly give much information of how
the model works as they do not correlate with the
highest-PMI tokens in Table 6. The flawed seman-
tics is a good example of how the framework makes

use of non-contextual embeddings, even though
words themselves may be synonyms, they still do
not make sense within the context they are in, see
Appendix A.4. Overall this shows that a vanilla
DestilBERT fine-tuned on a classification task is
highly vulnerable to adversarial attacks, therefore
this demonstrates the need and motivation for de-
fense against such attacks, potentially with adver-
sarial training or any other data pre-processing or
postprocessing.

References
Rami Aly, Zhijiang Guo, Michael Sejr Schlichtkrull,

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, Oana Cocarascu, and Arpit
Mittal. 2021. The fact extraction and VERification
over unstructured and structured information
(FEVEROUS) shared task. In Proceedings of the
Fourth Workshop on Fact Extraction and VERifica-
tion (FEVER), pages 1–13, Dominican Republic.
Association for Computational Linguistics.

Pepa Atanasova, Dustin Wright, and Isabelle Augen-
stein. 2020. Generating label cohesive and well-
formed adversarial claims. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 3168–3177,
Online. Association for Computational Linguistics.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine
Nelson, Nedim Šrndić, Pavel Laskov, Giorgio Giac-
into, and Fabio Roli. 2013. Evasion attacks against
machine learning at test time. In Joint European
conference on machine learning and knowledge dis-
covery in databases, pages 387–402. Springer.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM for
natural language inference. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1657–1668, Vancouver, Canada. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018a. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018b. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 31–36,
Melbourne, Australia. Association for Computational
Linguistics.

Zhijiang Guo, Michael Schlichtkrull, and Andreas Vla-
chos. 2022. A Survey on Automated Fact-Checking.
Transactions of the Association for Computational
Linguistics, 10:178–206.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel Bowman, and Noah A. Smith.
2018. Annotation artifacts in natural language infer-
ence data. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 107–112,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Naeemul Hassan, Bill Adair, James Hamilton, Chengkai
Li, Mark Tremayne, Jun Yang, and Cong Yu. 2015.
The quest to automate fact-checking. Proceedings of
the 2015 Computation + Journalism Symposium.

Pinjia He, Clara Meister, and Zhendong Su. 2020.
Structure-invariant testing for machine translation. In
2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE), pages 961–973. IEEE.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Nanjiang Jiang and Marie-Catherine de Marneffe. 2019.
Evaluating BERT for natural language inference: A
case study on the CommitmentBank. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 6086–6091, Hong Kong,
China. Association for Computational Linguistics.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is BERT really robust? natural
language attack on text classification and entailment.
CoRR, abs/1907.11932.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio.
2017. Adversarial machine learning at scale. In 5th
International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

Jieh-Sheng Lee and Jieh Hsiang. 2020. Patent classi-
fication by fine-tuning bert language model. World
Patent Information, 61:101965.

Hanmeng Liu, Leyang Cui, Jian Liu, and Yue Zhang.
2021. Natural language inference in context-
investigating contextual reasoning over long texts.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 13388–13396.

https://doi.org/10.18653/v1/2021.fever-1.1
https://doi.org/10.18653/v1/2021.fever-1.1
https://doi.org/10.18653/v1/2021.fever-1.1
https://doi.org/10.18653/v1/2020.emnlp-main.256
https://doi.org/10.18653/v1/2020.emnlp-main.256
https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.18653/v1/P17-1152
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.1162/tacl_a_00454
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/D19-1630
https://doi.org/10.18653/v1/D19-1630
http://arxiv.org/abs/1907.11932
http://arxiv.org/abs/1907.11932
https://openreview.net/forum?id=BJm4T4Kgx
https://doi.org/https://doi.org/10.1016/j.wpi.2020.101965
https://doi.org/https://doi.org/10.1016/j.wpi.2020.101965

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018.
Towards deep learning models resistant to adversarial
attacks. In International Conference on Learning
Representations.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

John X Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. Textattack: A frame-
work for adversarial attacks, data augmentation,
and adversarial training in nlp. arXiv preprint
arXiv:2005.05909.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen,
Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang,
and Huajun Chen. 2022. Reasoning with lan-
guage model prompting: A survey. arXiv preprint
arXiv:2212.09597.

Shilin Qiu, Qihe Liu, Shijie Zhou, and Wen Huang.
2022. Adversarial attack and defense technologies in
natural language processing: A survey. Neurocom-
puting, 492:278–307.

Tom Roth, Yansong Gao, Alsharif Abuadbba, Surya
Nepal, and Wei Liu. 2021. Token-modification ad-
versarial attacks for natural language processing: A
survey. CoRR, abs/2103.00676.

Tal Schuster, Darsh Shah, Yun Jie Serene Yeo, Daniel
Roberto Filizzola Ortiz, Enrico Santus, and Regina
Barzilay. 2019. Towards debiasing fact verification
models. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3419–3425, Hong Kong, China. Association for Com-
putational Linguistics.

Shane Storks, Qiaozi Gao, and Joyce Y Chai. 2019.
Recent advances in natural language inference: A
survey of benchmarks, resources, and approaches.
arXiv preprint arXiv:1904.01172.

Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi
Sakurai. 2019. One pixel attack for fooling deep
neural networks. IEEE Transactions on Evolutionary
Computation, 23(5):828–841.

Teo Susnjak. 2022. Chatgpt: The end of online exam
integrity? arXiv preprint arXiv:2212.09292.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2013. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199.

Shawn Tan, Yikang Shen, Chin-wei Huang, and Aaron
Courville. 2019. Investigating biases in textual en-
tailment datasets. arXiv preprint arXiv:1906.09635.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 809–819, New Orleans, Louisiana.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner,
and Sameer Singh. 2019. Universal adversarial trig-
gers for attacking and analyzing nlp. arXiv preprint
arXiv:1908.07125.

William Yang Wang. 2017. “liar, liar pants on fire”:
A new benchmark dataset for fake news detection.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 2:
Short Papers), pages 422–426, Vancouver, Canada.
Association for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Jin Yong Yoo and Yanjun Qi. 2021. Towards improving
adversarial training of nlp models. arXiv preprint
arXiv:2109.00544.

Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji
Zhang, Zixian Ma, Bairu Hou, Yuan Zang, Zhiyuan
Liu, and Maosong Sun. 2021a. OpenAttack: An
open-source textual adversarial attack toolkit. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing: System Demonstrations, pages 363–371,
Online. Association for Computational Linguistics.

Xia Zeng, Amani S. Abumansour, and Arkaitz Zubiaga.
2021b. Automated fact-checking: A survey. Lan-
guage and Linguistics Compass, 15(10):e12438.

https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/https://doi.org/10.1016/j.neucom.2022.04.020
https://doi.org/https://doi.org/10.1016/j.neucom.2022.04.020
http://arxiv.org/abs/2103.00676
http://arxiv.org/abs/2103.00676
http://arxiv.org/abs/2103.00676
https://doi.org/10.18653/v1/D19-1341
https://doi.org/10.18653/v1/D19-1341
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.18653/v1/P17-2067
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.18653/v1/2021.acl-demo.43
https://doi.org/10.18653/v1/2021.acl-demo.43
https://doi.org/https://doi.org/10.1111/lnc3.12438

Zhixuan Zhou, Huankang Guan, Meghana Moorthy
Bhat, and Justin Hsu. 2019. Fake news detection
via NLP is vulnerable to adversarial attacks. CoRR,
abs/1901.09657.

http://arxiv.org/abs/1901.09657
http://arxiv.org/abs/1901.09657

A Appendix

A.1 Baseline Model Training

To be ran as a Jupyter notebook

1 # -*- coding: utf-8 -*-
2 """FTML_model_train.ipynb
3

4 Automatically generated by Colaboratory.
5

6 """
7

8 !pip install pytorch-crf
9 !pip install datasets

10 !pip install sklearn
11 !pip install transformers
12 !pip install evaluate
13 !pip install huggingface_hub
14

15 # Commented out IPython magic to ensure Python compatibility.
16 # %reload_ext autoreload
17 # %autoreload 2
18 # %matplotlib inline
19

20 import io
21 from math import log
22 import os
23 import pickle
24 from numpy import array
25 from numpy import argmax
26 import torch
27 import random
28 from math import log
29 from numpy import array
30 from numpy import argmax
31 import numpy as np
32 from torch.utils.data import Dataset, DataLoader
33 from torch import nn
34 from torch.optim import Adam
35 from torchcrf import CRF
36 from torch.optim.lr_scheduler import ExponentialLR, CyclicLR
37 from typing import List, Tuple, AnyStr
38 from tqdm import tqdm
39 from sklearn.metrics import precision_recall_fscore_support
40 import matplotlib.pyplot as plt
41 from copy import deepcopy
42 from datasets import load_dataset, load_metric
43 from sklearn.metrics import confusion_matrix
44 from sklearn.metrics import classification_report
45 import transformers
46 from transformers import AutoTokenizer, AdamW
47 from transformers import TrainingArguments, Trainer
48 import transformers
49 import evaluate
50 from transformers import (
51 AutoConfig,
52 AutoModelForTokenClassification,
53 AutoTokenizer,
54 DataCollatorForTokenClassification,
55 HfArgumentParser,
56 PretrainedConfig,
57 PreTrainedTokenizerFast,
58 Trainer,
59 TrainingArguments,
60 set_seed,
61)
62 import pandas as pd
63 import seaborn as sn

64 import matplotlib.pyplot as plt
65 from datasets import DatasetDict
66 from dataclasses import dataclass
67 import random
68 import time
69 import datetime
70 import sys
71 import math
72

73

74 def enforce_reproducibility(seed=42):
75 torch.manual_seed(seed)
76 torch.cuda.manual_seed_all(seed)
77 torch.backends.cudnn.deterministic = True
78 torch.backends.cudnn.benchmark = False
79 random.seed(seed)
80 np.random.seed(seed)
81 enforce_reproducibility()
82

83 HG_MODEL_NAME = "distilbert-base-uncased"
84 HG_DATASET = "pietrolesci/nli_fever"
85 NUM_LABELS = 3
86 os.environ["WANDB_DISABLED"] = "true"
87

88 @dataclass
89 class DataPoint:
90 """Class that represents a datapoint"""
91 cntTkn: list
92 hypTkn: list # answer tokenizer
93 lbl: str # raw full text
94

95

96 def loadModel():
97 return transformers \
98 .AutoModelForSequenceClassification \
99 .from_pretrained(HG_MODEL_NAME, num_labels=NUM_LABELS) \

100 .to(device)
101

102

103 def loadTokenizer():
104 return AutoTokenizer.from_pretrained(HG_MODEL_NAME)
105

106

107 def loadFeverDataset():
108 return load_dataset(HG_DATASET)
109

110 def appendToLogFile(text):
111 """Appends text to a log file"""
112 with open(logName, "a") as f:
113 timeStamp = datetime.datetime.now().time()
114 f.write(f"{timeStamp}: {text}")
115 # Check if text string ends with a new line, if not then add one. Beware of empty text strings.
116 if text and text[-1] != "\n":
117 f.write("\n")
118

119 def printAndLog(text):
120 """Prints and logs text"""
121 print(text)
122 appendToLogFile(text)
123

124 def idxToLabels():
125 return {0: "SUPPORTS", 1: "NOT ENOUGH INFO", 2: "REFUTES"}
126

127 def getLabels():
128 return {"SUPPORTS": 0, "NOT ENOUGH INFO": 1, "REFUTES": 2}
129

130 def balance_dataset(ds, numSamples=-1):
131 """
132 Balances the dataset by removing samples from the majority class
133 :param ds: The dataset

134 :param numSamples: The number of samples to keep
135 :return: The balanced dataset
136 """
137 # Get the number of samples for each label
138 dss = ds[:]
139 labels = dss["fever_gold_label"]
140 if numSamples == -1:
141 numSamples = len(labels)
142 unique, counts = np.unique(labels, return_counts=True)
143 counts = np.roll(counts, 1)
144 unique = np.roll(unique, 1)
145 numSamples = min(counts)
146

147 # get indices of ds elements where ds['label'] is 0
148 arr = dss['label']
149 arr = np.array(arr)
150 indicesSup = np.where(arr == 0)[0][:numSamples]
151 indicesNei = np.where(arr == 1)[0][:numSamples]
152 indicesRef = np.where(arr == 2)[0][:numSamples]
153

154 # combine the indices
155 indices = np.sort((np.concatenate((indicesSup, indicesNei, indicesRef))))
156 indices = indices.tolist()
157 # get a subset of the dataset
158 return indices
159

160

161 def compute_metrics(eval_pred):
162 logits, labels = eval_pred
163 predictions = np.argmax(logits, axis=-1)
164 return metric.compute(predictions=predictions, references=labels, average="macro")
165

166 def tokenize_function(examples):
167 textPairs = zip(examples["premise"], examples["hypothesis"])
168 textPairs = [pair[0] + " " + pair[1] for pair in textPairs]
169 out = tokenizer(textPairs, padding="max_length", return_tensors="pt", truncation=True).to(device)
170 out.data["label"] = examples["label"]
171 return out
172

173 # Setup logging
174 timeStamp = time.strftime("%Y%m%d-%H%M%S")
175 currFileLoc = ""
176 logName = os.path.join(currFileLoc, f"l6_log_{timeStamp}.txt")
177 with open(logName, 'w') as f:
178 f.write("")
179

180 appendToLogFile("Start of log file \n")
181 appendToLogFile(f"Using CUDA: {torch.cuda.is_available()} \n")
182

183 # Set constants
184 DEBUG = False
185 device = (torch.device("cpu"), torch.device("cuda"))[torch.cuda.is_available()]
186

187 # Load and parse the dataset
188 ds = loadFeverDataset()
189 model = loadModel()
190 tokenizer = loadTokenizer()
191

192 # Map the dataset to the tokenizer
193 trainIdx = balance_dataset(ds['train'], 7500)
194 devIdx = balance_dataset(ds['dev'], 1500)
195 tds = ds.map(tokenize_function, batched=True)
196

197 # Create subsets of balanced dataset
198 trainSet = torch.utils.data.Subset(tds['train'], trainIdx)
199 devSet = torch.utils.data.Subset(tds['dev'], devIdx)
200

201 # Training hyperparameters
202 torch.cuda.empty_cache()
203 metric = load_metric('f1')

204

205 dropout_prob = 0.25
206 epochs = 10
207 batch_size = 64
208 lr = 0.0001
209 n_epochs = 1
210 training_args = TrainingArguments(
211 "destilbert_uncased_fever_nli",
212 evaluation_strategy = "epoch",
213 save_strategy = "epoch",
214 learning_rate=lr,
215 per_device_train_batch_size=batch_size,
216 per_device_eval_batch_size=batch_size,
217 num_train_epochs=epochs,
218 weight_decay=0.01,
219 load_best_model_at_end=True,
220 metric_for_best_model="f1",
221 push_to_hub=True,
222 push_to_hub_model_id="destilbert_uncased_fever_nli"
223)
224

225 trainer = Trainer(
226 model=model,
227 args=training_args,
228 train_dataset=trainSet,
229 eval_dataset=devSet,
230 tokenizer=tokenizer,
231 compute_metrics=compute_metrics
232)
233 trainer.train()
234

235 trainer.push_to_hub()
236

237 # evaluate the model
238 preds = []
239 gt = []
240 model.eval()
241 with torch.no_grad():
242 for i, input in enumerate(tqdm(devSet)):
243 if input['label'] == -1:
244 continue
245

246 premise = input['premise']
247 hypothesis = input['hypothesis']
248 label = input['label']
249

250 # Tokenize the premise and hypothesis
251 tokenizedSequence = tokenizer.encode_plus(premise, hypothesis,
252 max_length=512,
253 return_token_type_ids=True,
254 truncation=True)
255

256 input_ids = torch.tensor(tokenizedSequence['input_ids']).long().unsqueeze(0).to(device)
257 token_type_ids = torch.Tensor(tokenizedSequence['token_type_ids']).long().unsqueeze(0).to(device)
258 attention_mask = torch.Tensor(tokenizedSequence['attention_mask']).long().unsqueeze(0).to(device)
259

260 outputs = model(input_ids,
261 attention_mask=attention_mask,
262 labels=None)
263

264 predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist()
265

266 preds.append(np.argmax(predicted_probability))
267 gt.append(label)
268

269 print(HG_MODEL_NAME)
270 print(getLabels())
271 print(classification_report(gt, preds))
272

273 cm = confusion_matrix(gt, preds)

274 classes = [*getLabels()]
275 df_cfm = pd.DataFrame(cm, index = classes, columns = classes)
276 plt.figure(figsize = (10,7))
277 cfm_plot = sn.heatmap(df_cfm, annot=True, fmt='g')

A.2 Alternative UAT triggers
An alternative trigger recipe cried summarized was noted during a qualitative inspection of the results,
that destroys nearly all predictions besides NEI. The trigger words directly correlate with three most
popular triggers from the PMI score Table 8

Figure 5: Trigger: recipe cried summarized

A.3 Non-normalized PMI Score

Supports PMI NEI PMI Refutes PMI
countdown 1.4059 ##rud 1.9776 ##skaya 1.4395
amor 1.4059 recipe 1.9776 fairchild 1.4395
dreaming 1.4059 cried 1.9776 1749 1.4395
accomplish 1.4059 summarized 1.9776 1833 1.4395
mundo 1.4059 theologian 1.9776 ngos 1.4395
speechless 1.4059 ##test 1.9776 ##oun 1.4395
essen 1.4059 educator 1.9776 ##eous 1.4395
marines 1.4059 deacon 1.9776 abby 1.4395
cardinal 1.4059 exceeded 1.9776 maximilian 1.4395
ethical 1.4059 1.9776 relation 1.4395
projected 1.4059 sonora 1.9776 ##ologies 1.4395
deteriorating 1.4059 breeders 1.9776 goofy 1.4395
headline 1.4059 ##mx 1.9776 rumors 1.4395
sideways 1.4059 ##cross 1.9776 speculation 1.4395
rooted 1.4059 bikes 1.9776 gibbs 1.4395

bikes 1.9776

Table 8: Unnormalized PMI scores of the training split

A.4 Examples from TextFooler

Figure 6: Example of TextFooler not retaining semantics. Red original; Green adversarial

Figure 7: Example of TextFooler not retaining semantics. Red original; Green adversarial

Figure 8: Successful example of TextFooler changing a single word to flip the label

