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Abstract

Indoor navigation is a topic undergoing research within robotics, but
can also be applied in commerce, manufacturing or industrial applications.
We investigate how AR Head-Mounted Display Magic Leap 1 can be inte-
grated into an indoor navigation framework aimed for commerce or asset
management. Magic Leap 1 supports spatial mapping of real-life environ-
ment as well as tracking users in six degrees-of-freedom, and provides the
ability of recognizing and estimating the orientation in space of fiducial
markers. We propose an end-to-end framework that is able of mapping
out an environment, digitally processing it and providing a framework
for connecting client devices for issuing navigation requests. Our system
proves to function end-to-end although fails to improve task completion
time when tested in a mock-up environment. This can be attributed to
over-simplified test task, low resolution of guidance elements and general
inexperience with AR devices by the test subjects. Our study concludes
that the first iteration design should have an improved user interaction
and it should be tested with a different methodology. It also identifies
future work and features such as IoT communication, computer vision
integration and a revamped user interface based around human-computer
interaction research.

1 Introduction

Modern mainstream navigation services such as Google Maps, Apple Maps,
Waze are all excellent ways of getting around outdoor environments down to
the precision of 5 meters under open sky [I]. Additionally, Google Maps also
has already deployed in production an Augmented Reality (AR) solution called
Live View [2] that is able to annotate directions on a pass-through video using
a modern smartphone, and a beta feature is available on certain devices that
allows for locating people in a crowd upon subject’s permission.

Tech companies such as Google and Apple have also started initiatives for in-
door maps [3] [2] although they still use GPS as the main navigation engine
and the frameworks do not scale to more specific contexts such as navigating
to particular items within warehouses or shops. Previous works done within
the field of indoor positioning agree that GPS is not enough for localizing in an



indoor environment [4] [5]. Other approaches besides GPS for localizing a user
would be communication-based such as Bluetooth, Ultra-Wide Band(UWB),
Visible-Light Communication (VLC) or Wi-Fi [5] although in some cases these
can be expensive, may require specialized equipment and create an overall bur-
den by extending the number of hardware units necessary within a given system,
overview of accuracy vs cost is depicted in Figure
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Figure 1: Overview of Communications Based Tracking [5]

A technique for reducing the hardware units necessary for a navigational sys-
tem would be to incorporate Simultaneous Mapping and Localization technology
(SLAM) [@] [7] [8]. With the increase of computational power and advances in
computer vision, work on integrating SLAM into indoor navigation has already
been conducted [6] [9]

This concludes that to cater the needs of indoor navigation, a hypothetical sys-
tem would require a more accurate user tracking than what GPS can offer, and
with advances of modern technology, ideally look for opportunities to limit hard-
ware units through using modern computer vision based solutions. In the case
of retail or manufacturing contexts, the hypothetical navigation system should
be able to define specific target destinations within accuracy of centimetres such
that individual items or shelving units can be accurately localised. Commercial
attempts to solve indoor navigation have also been made by commercial compa-
nies Tangar and Mappedin[10] [11]. Although information on technology used
by Tangar and Mappedin is limited, their solutions fail to claim cross-platform
compatibility with modern AR head-mounted displays (HMDs). Research sug-
gests that in the context of navigation, a handheld device should be swapped
for an HMD to reduce the task workload on end users [12], thus allowing them
to freely use their hands while performing leisure or work related activities.
This raises a research question of how can a scaleable, flexible AR navigation



system be designed that could support tracking and guidance accuracy within
centimetre range while supporting a HMD and also smartphones. While AR
HMDs such as Microsoft HoloLens 1 and 2, Magic Leap 1 are expensive, bulky
and largely inaccessible to an average consumer [I3] [I4], the market is moving
towards more ergonomic and aesthetic AR solutions [14] [15] [I6]. As of now,
ideally an indoor navigation system should also be able to support smartphones
due to their mainstream accessibility although a cross-platform compatibility
would future-proof the software framework for when AR headsets also become
a norm in our everyday life. The vision is that businesses can provide indoor
navigation as a service, thus allowing customers and employees consume it using
their device of choice.

1.1 Goal and Purpose

The goal is to develop a baseline novel navigation system that is not strictly
platform dependant and with minimum effort can be adapted to a multitude
of use-cases. This novel navigation system would solve the problem of high fi-
delity indoor navigation and provide navigation as a service by being agnostic
of the end-user’s device platform. Another goal is to measure the efficiency of
this system through evaluating quantitative and qualitative data gathered from
naive test subjects using the system. This would provide a baseline solution for
a more niche problem of indoor navigation

The purpose of the novel AR navigation system is to provide scalability and flex-
ibility through semi-automated adaptation to an arbitrary environments and by
providing a visual guidance of a shortest path between arbitrary targets given
a set of destinations.

[xtargets € Ydestinations]

2 Theoretical Background

2.1 Development of Augmented Reality

Augmented Reality enhances the real physical world with digital overlays such
as graphics, sound or other sensory stimuli. It can be used in various areas, e.g.
in games, in education, medical, navigation or industrial applications [I3] [14]
7.

AR can be experienced over a multitude of platforms and devices. Devices
running Android and iOS have the capability to host AR experiences through
annotating the pass-through camera feed with holograms and make use of cer-
tain device’s sensors. For Android and iOS there is support for AR software
development kits (SDKs) such as ARCore and ARKit that directly integrate in
modern game development engines such as Unreal or Unity [I8] [19]. Similarly



with state-of-the-art AR HMDs such as Magic Leap 1 and HoloLens 2 use Unity
and Unreal are the main development engines that integrate each individual de-
vices’ SDK [18] [I9]. To provide a seamless cross-platform compatibility, Unity
Technologies provides a development framework called AR Foundation that acts
as a layer of abstraction for each individual platform’s SDK [20].

2.2 Environment Digitization

For a navigation system that could optimize routes and present a user with
destinations, it is first important to create the map itself by digitizing the envi-
ronment. The digitized environment (scene) can be described through a scene
graph structure serializing into a JSON XML format. The scene describes the
real-life environment’s geometry with a finite resolution, as well as contains en-
tities that describe different destinations, i.e. destination location, or their type.
Representing an environment with such a structured approach allows other pro-
cessing modules such as the deserializer and pathfinder to parse the data and
process each entity according to its data type. An environment’s meta model is
shown in Figure [2]
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Figure 2: A digitized environment’s meta model

2.2.1 Geometry Representation

Point clouds are essentially a collection of discrete points in space that col-
lectively describe the shape of an arbitrary geometry [2I]. Point clouds can be
generated with the help of either lasers or RGB-D cameras. Industrial grade
LiDAR scanners such as FARO Focus or Leica HDS6000 provide high levels
of accuracy although they are expensive thus making them less accessible. A
cheaper and more accessible solution is to use a an RGB-D camera, such as
a Microsoft Kinect [22]. Other state of the art approaches use Simultaneous
Localization and Mapping (SLAM) technology to generate a point cloud from
a raw camera feed [7], a great benefit of this technology is that it can also be
used to localize the camera in a 3D space.

Triangular meshes represent geometrical surfaces by sampling a point cloud
and defining polygons between these faces [23]. As triangular meshes represent



a surface, certain techniques exist for reducing the mesh data as this becomes
mroe critical for decreasing the computational cost when processing the meshes
[24].

2.2.2 Navigation Destination Representation

In a hypothetical navigation system, a destination is an arbitrary point in space
with certain metadata that describes it. It can be a shelf or a particular item
in a grocery store or a warehouse, a room number in an office space, or other.
An automated approach for deriving destinations would be through applying a
machine learning model that is trained to recognize different parts of a mapped
environment and capture this metadata on a host device’s memory.

When using the SLAM technology, also a framework exist for adding semantic
labels to object during the environment mapping itself [25] [26], such approach
would speedup the environment authoring time by shifting the object recogni-
tion away from a post-processing stage.

Fiducial marker based solutions can provide a reasonably simple but reliable
tagging of certain areas within an environment [27] [28]. Common marker types
are QR or ArUco that are used for tagging spaces. While this solution would
be the most simplest, it would require manual efforts of placing the markers
around areas of interest and associating their encoded information with certain
labels.

2.3 User Tracking

The user tracking module provides an estimate of user’s position in real time.
Depending on the software design, it provides continuous user position updates
such that a path finding module can keep optimizing the most optimum route in
case the user’s movement deviates from it. As GPS is not effective for indoors,
the following sections give an overview of other available techniques that can be
used individually or in tandem for better accuracy and reliability.

2.3.1 Beacons

A beacon enables broadcasting small pieces of information, i.e orientation data
such as acceleration and rotation. In addition, the technology of the Bluetooth
Low Energy (BLE) can be used, so that the device consumes little energy and a
long battery life can be achieved. Therefore, the device transmits data in a low
frequency range, specifically 2.4 GHz, which is also used by Bluetooth and WiFi
[29]. One of the biggest differences between Bluetooth and BLE technology is
that BLE is constantly in sleep mode, except when communicating, which also
saves battery [30].

BLE beacons can be distinguished between connectable and non-connectable



devices. The non-connectable beacons can only send data, whereas the con-
nectable beacons can also receive and process data. Since only the transmission
of tracking data is relevant for this project, the non-connectable beacons would
be sufficient. By outputting the orientation data some aspects need to be taken
into account, so that the correct data is also processed further. For example,
attention must be paid to interference with the WiFi signal. Here, for instance,
the method of fingerprinting could be used, where a previously selected signal
is sent before the orientation data and an algorithm must be implemented on
the receiver side, which recognizes the desired signal and processes the subse-
quent orientation data [29]. Since the BLE beacon technology was not used,
this report does not go into further detail about the individual difficulties and
implications.

2.3.2 Visual SLAM

Visual Simultaneous Localization and Mapping (VSLAM) is a vision-based
tracking method [6]. It uses images acquired from a camera or other image
sensors to perform location and mapping functions when the environment and
location of the sensor are unknown. Originally intended for robot navigation,
SLAM was later also used for AR, since no special algorithm or software is
needed. Forms of VSLAM include monocular SLAM, binocular SLAM and
RGB-D depth camera SLAM [31] [32].

Visual SLAM algorithms are broadly divided into two categories. These are
depth methods, which use the brightness of the camera, and sparse methods,
which match feature points of images [33]. Constructing a 3D map with VSLAM
thus requires good lighting conditions and enough detectable visual features in
indoor spaces. Bare walls or reflective surfaces severely limit accuracy [34].
To reduce accumulation errors and counteract fast camera movements, the ex-
traction of points features can be extended by that of line features [34] [35].
However, as noted in other research, this method is not as well-established in
literature and therefore poses a greater challenge [35].

2.3.3 Wifi-RTT

WiFi Round Trip Time, also known as WiFi RT'T, operates similar to Beacons
and allows devices such as smartphones to estimate the distance to a nearby
WiFi access point (AP). The distance is determined directly on the device.
WiFi RTT is based on the fine time measurement (FTM) framework. First, an
FTM request is sent to the RTT AP. If this is accepted by the AP, the devices
exchange the FTM-message. They store their transmit timestamps and the re-
ceive timestamp of the acknowledgement packet with a resolution of picoseconds
to determine the time of arrival (ToA) and time of departure (ToD) [30] [30].
These are needed to calculate the Time of Flight (ToF) of the signal from the
transmitter to the receiver [4]. In the example, this means from the AP to the
smartphone.



WiFi RTT is characterized by an accuracy of one meter [4] [30]. Another ad-
vantage of this method is that the device does not have to be connected to the
AP, which preserves the user’s privacy [30].

2.3.4 Opti-Tracker

Position tracking with the Opti-Tracker system is done with the help of infrared
cameras and markers. The infrared cameras are placed at certain distances from
each other on the outer area of the tracking space. The setup of the system can
be seen in Figure ?7. If a marker is brought into this area, it will be recognized
by the infrared cameras and the position in space (relative to the cameras) can
be calculated. With the help of this technique and the amount of cameras, the
position of the marker can be determined accurately up to 1 mm [37]. With the
help of the markers, non-accessible areas can be declared quickly and simply.
In example, if markers are placed on the edge of non walk-able areas, these can
later be defined as non-accessible places. This can be helpful when navigating.
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Figure 3: Setup of the Opti-Tracker system [37]

2.3.5 Kinect v2.0

The Kinect version 2.0 consists of an RGB- and an infrared-camera and three
infrared emitters to guarantee the visibility of the environment. The infrared
camera is responsible for depth estimation and both cameras record at 30 Hz.
to obtain depth information, the Kinect v2.0 uses the time-of-flight or short
T-0-F method. The infrared emitters send light in infrared wavelength, which
is reflected by the objects in front of the camera and then hits the camera’s
sensors. From each of the 512x424 pixels, the distance between the object and



the sensor is now measured, using the differences in time of flight, between the
reflected signal and a reference signal received from the transmitter. With the
help of the resulting phase shift, the distance can be calculated. The estimation
of depth information, can be determined with a maximum field of view of 70°
horizontal and 60° vertical [38]. According to Microsoft, precise measurements
are ideal with a distance between sensor and object between 0.5 meters and
4.5 meters. Based on the depth information a point-cloud of the environment
can be created to map out the space. To gain additional information about the
position-tracking of people in the environment, the Kinect v2.0 can locate up
to 6 people simultaneously and can output the position of the subjects in space,
relative to its position [39)].

2.3.6 Vive-Tracker

The HTC Vive-Tracker works similar to the Opti-Tracker. The tracking sys-
tems works with a base-station, also called Lighthouse, which emits infrared
light. For this purpose, there is a tracker, which is equipped with photo-diodes
on the outside. These are distributed at a constant distances from each other.
In the following, the principle of this tracking method is briefly described and
visualized in Figure [4]
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Figure 4: Operating principle of the Vive-Tracker [40]

The Lighthouse emits synchronized infrared light sweeps which triggers the
photo-diodes of the tracker. Due to the delayed arrival time of the light sweeps
at the photo diodes on the tracker, the horizontal and vertical angle can be
determined. With several of these measurements, the position of the tracker
in space can thus be determined. In addition, the tracker has a built-in Iner-
tial Measurement Uni, which can be used to determine further movement and
position data-updates to ensure a more accurate tracking [40].



2.4 Pathfinding

For the purpose of pathfinding, the A* algorithm is used. The algorithm aims
to determine the shortest path from a starting point to the destination, via
heuristic functions. The idea behind the algorithm is that it navigates a finite
distance from node to node. Two other essential components are the two col-
lections open and closed lists, they are used to sequentially connect the path.
The flowchart in Figure [5| shows the operation of the A* algorithm [41].
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Figure 5: Flowchart of A* algorithm [41]

When the start and destination is set, the index of the start node is put in
the open list and the destination is set as the target. Thereafter, every adjacent
node is put in the open list and the cost function of each node gets calculated,
with a heuristic equation which gets explained in the following part [42].

F=G+H (1)

F = Total movement cost
G = Exact cost from the start node to current node n
H = Heuristic estimated cost from current node n to the end node

When calculating the G variable, it is possible to weight some movements. For
example when a node is diagonal from the current, the G score can be weighted



higher. This makes sense if moving diagonal should get punished. To estimate
the H score there are different methods, but in this case the Manhattan method
was used. So the Manhattan distance from the current node the the target, only
moving horizontally and vertically, gets calculated and the amount of nodes that
it takes to get there is summed up. The F score is the sum of the G and the H
variable [43].

After calculating the F scores of the nodes in the open list, the node with
the lowest F score gets chosen as the current node. The index of the previous
current one is then put in the closed list. Thereafter it is checked if the current
node is the target, if yes the algorithm is finished and the indices in the closed
list, are the optimal path. If the current index does not refer to the target index,
then all the adjacent nodes are put in the open list, except they are already in
the closed list. Thereafter the process of calculating the F score and so on gets
repeated until the target is reached.

3 Technical Background

3.1 Environment Processing

Given a certain environment description, a fully functional navigational sys-
tem would require a processing engine that deserializes and interprets the data,
performs route optimization and outputs guidance information over to client
devices. This is envisioned as a centralized server and, in other works, is de-
scribed as a Navigational Module [5].

Such a system would require wireless communication with client devices, it
should be fast enough to calculate a shortest path in real-time and, in certain
use cases, respond to dynamic changes in the environment such as misplaced
retail items by customers.

3.2 Spatial Computing
3.3 AR Devices

Our framework’s design will mainly focus around using state-of-the-art AR
HMD’s for displaying the visual guidance cues. This allows us to potentially
improve comfort and usability of the system [12] and also to explore a different
approach than what commercial products use [I0] [I1]. Currently in the mar-
ket there are two options for standalone devices that provide a rich featureset,
HoloLens 2 and Magic Leap 1. A feature overview can be found in the Table
[[] Disregarding factors such as component or build quality, HoloLens 2 and
Magic Leap 1 have a very similar baseline featureset. It is especially important
to note that both devices support spatial mapping and six degree-of-freedom
(6DoF) tracking. Meaning that a triangular mesh can be generated by scan-
ning real-life geometry, and users can be tracked via their position and rotation.
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HoloLens 2 | Magic Leap 1

Spatial Mapping
Eye tracking
Voice input
Semantic Labelling
Hand input
Custom hand gestures
Accelerometer/Gyroscope
WLAN
6DoF Tracking
Field of View (° diagonal)

slksikalkallts

S| | | | | ] | | ]
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Table 1: Brief overview of HoloLens 2 and Magic Leap 1 features [13] [14]

This means that both AR HMDs can be used as client devices but also as an
environment authoring device.

Figure 6: Magic Leap 1, Source: [14]

3.3.1 Magicverse SDK

The Magicverse SDK builds on existing capabilities of the Magic Leap (ML)
hardware and software, such as spatial mapping and cross-platform anchoring
of content through Persistent Coordinate Frames (PCFs). It can be used to
create multi-user applications for physical spaces, which are accessible via XR-
compatible devices [44]
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3.4 Unity

Unity is primarily a video game engine that for developing 2D and 3D video
games but can also be used for immersive content, animation, architectural vi-
sualization or even machine learning and other use cases [45]. The editor is
compatible with Mac and Windows as well as Linux and it supports build-
ing projects targeted for a multitude of platforms, including Lumin OS and
Universal Windows Platform. The advantage of Unity is its ease of use, large
community base and the ability to quickly iterate and prototype across devel-
opment cycles through a rich proprietary API.

Magic Leap and HoloLens have also simulator frameworks available that in-
tegrate with Unity. This allows for triggering device specific events thus proto-
types can be tested without having to build the app and deploy it to ML [44]
[46]. Unity also provides a comprehensive collection of paid/free third-party
assets through their asset store that increase developer productivity. Relevant
assets for navigational systems would be networking (extOSC) and computer
vision (OpenCV) [T].

4 Experimental Setup

Based on the evaluation of current state-of-the-art solutions and available hard-
ware devices, we propose an experimental software setup that can be viewed
as an initial prototype for the next generation indoor space navigation systems.
The software architecture is based around principles of simplicity, cross-platform
compatibility, flexibility, speed of environment authoring and scalability. The
architecture is split into three separate components Environment Mapping
- Navigation Processor - Client Device. An overview of a proposed archi-
tecture is depicted in Figure [7]

4.1 Environment Mapping

To generate paths, indoor navigation must be able to recognize the environment.
Magic Leap’s Spatial Mapper, which comes with the Lumin SDK, represents the
geometry of the real environment as a single spatial map. It uses computer vi-
sion to recognize surfaces in real time and convert them into a large number of
triangle meshes [14]. After an entire area is meshed, it can be spatially extracted.

Using computer vision, the Magic Leap can also recognize certain types of mark-
ers and infer their encoded IDs and estimate their position, and rotation in space.
For our application, we used ArUco markers, which are binary, fiducial mark-
ers. To unify the coordinate space between mapping and client applications, a
marker with a certain ID was used to which relative positions of all other objects
were calculated to.
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Unity’s meshing snippet was used to add the real mesh objects as child ob-
jects to a parent object during runtime to aid the merging of all meshes into
one upon serialization [44]. As soon as the environment has been scanned and
all markers have been detected, an event is triggered via the user interface in
the ML application in order to establish a connection to a server application via
Wireless Local Area Network (WLAN). Subsequently, the environment data is
sent over a Transmission Control Protocol (TCP) connection as an XML string.
The string contains the environment in as a single node and also describes the
orientation values of each scanned marker as individual nodes. Position and ro-
tation values described in the scene description are relative to its parent node,
see See listing

Listing 1: Example Environment Description

<?7xml version="1.0" encoding="utf—-8” standalone="yes” 7>
<Root>
<Mesh id="mesh:Meshes” pos="(0.0,.0.0,.0.0)” rot="(0.0,.0.0,.0.0)">
<Vertex index="0" position="0.5.-0.5_.0.5" />
<Vertex index="1" position="-0.5.—-0.5_0.5" />
<Vertex index="2" position="0.5.0.5_0.5" />
<Vertex index="3" position="-0.5.0.5.0.5" />
<Vertex index="4" position="0.5.0.5.-0.5" />
<Vertex index="5" position="-0.5.0.5_.-0.5" />
<Vertex index="6" position="0.5.-0.5_-0.5" />
<Vertex index="7" position="-0.5.-0.5.-0.5" />
<Face index="0" vertices="0.2.3" />
<Face index="1" vertices="0.3.1" />
<Face index="2" vertices="2.4.5" />
<Face index="3" vertices="2.5.3" />
<Face index="4" vertices="4.6.7" />
<Face index="5" vertices="4.7.5" />
<Face index="6" vertices="6.0.1" />
<Face index="7" vertices="6.1.7" />
<Face index="8" vertices="1.3.5" />
<Face index="9" vertices="1.5.7" />
<Face index="10" vertices="6.4.2" />
<Face index="11" vertices="6.2.0" />
<Mesh />
<Marker id="5" pos="(3.9,.-0.1,.0.0)” rot="(0.0,.0.0,.0.0)" />
<Marker id="15" pos="(2.6,.-0.1,.0.0)” rot="(0.0,-0.0,.0.0)" />
<Marker id="6" pos="(3.0,.0.1,.-0.9)” rot="(0.0,.0.0,.0.0)" />
</Root>

4.2 Navigation Processor

The navigation processing module is responsible for handling the incoming en-
vironment data, saving it in local storage and deserializing the text into datas-
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Figure 8: Spatial Mapping in Unity

tructures. The experimental module is written in Python 3.9 due to Python’s
flexibility, speed of prototyping and vast support for third party libraries.

The deserialization of XML was done using ElementTree library [48] and for
creating datastructures that represent the scene, TriMesh library was used [49].
As TriMesh uses OpenGL right-handed coordinate system, the module also
performs conversion from left-hand coordinate system (Unity) to right-handed
(OpenGL). TriMesh also has a native voxelization engine that can be used to
split a given mesh into discrete regions with a configurable size, as well as
provides utility functions for querying the grid for voxel indices that contain
arbitrary points in space. This is important for the project because it allows to
query the grid for information such as, voxel index of the user location, voxel
indices of destinations.

A voxelization of the environment is also critical for the A* pathfinding al-
gorithm because it requires a grid-like structure as input for determining the
shortest path. This also means that the size of each voxel affects the precis-
sion of the navigation and that is a trade-off for faster processing times. In
our system, we estimate a bounding box of the mesh, which then is voxelized.
This allows for a very simple determination of each voxels’ neighbours, which
is metadata required by the pathfinding algorithm. Given that the pathfinding
submodule will be provided with neighbouring voxels, the output path will only
be able to display guidance information laterally and longitudinally with a 45
degree resolution. In our system, we used a voxel size of 35cm, that gives a
maximal destination offset error of 17,5cm.
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Once an environment has gone through pre-processing, the module is ready
to serve client applications by binding to an OSC port and listening for incom-
ing navigation requests. A navigation request simply contains the number of
destinations, along with the starting position. After feeding this information
to the pathfinder module, the A* algorithm computes each route individually
between destinations in the form of X-Y-Z positions of voxels, and afterwards
concatenates all routes together to form a single path. The output to client
device contains an array of X-Y-Z positions returned over OSC. [50].

4.3 Client Application

For the prototype, the client application is implemented on Magic Leap plat-
form for the sake of hardware re-usability and its accessibility. Essentially this
module could be developed on any other platform as long as it can read ArUco
markers and bind to a UDP port over wireless network for receiving navigational
information.

The module is intended to provide the user with the ability to raise the neces-
sary events for issuing a navigation requests to a set of destinations. Intended
to interpret the guidance information given by the Navigation Processor by dis-
playing a guidance arrow at each of the provided cartesian coordinate points.
Before the application can be successfully used, it is necessary to calibrate the
global point of reference by gazing at a specific ArUco marker ID 49 that was
designated specifically for this purpose. It is very important that the marker
has not been moved ever since the environment description has been authored
because otherwise this introduces an error when displaying the guidance arrows
with the length of the offset vector.

Upon issuing a client request and receiving the guidance arrows, the client ap-
plication starts to continuously update the Navigation Processor of its where-
abouts such that any updates to the currently displayed route can be visualized.

Guidance arrows were color coded with default color being cyan, green de-
noting starting position and red denoting the destination. The color code was
introduced to visualize a better indication of different parts of the route. See
Figures and [J for a visualization.

5 Experiment

5.1 Participants

A total of 10 participants between the ages of 22 and 37 took part in the experi-
ment. The average age was 26.3 years. None of the participants reported motor
health problems, nor do they have vision problems or other health limitations
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Figure 9: Mesh and Navigation Visualization. Isometric Top View.

Figure 10: Mesh and Navigation Visualization. Isometric Perspective View.
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that could affect the test. Half of the participants reported having no previous
experience in AR.

5.2 Setup

11 ArUco markers with 11 different IDs were placed on the walls of a mock-up
environment, see Figure [[I] Some of the positional off-sets of markers is at-
tributed to device’s native inaccuracies when deriving their positions. Each test
participant had a fixed starting point and was given the task of navigating to
two pre-defined paths, once with and once without AR navigation. The path
with AR navigation consisted of marker IDs 11, 0 and 7, and without AR nav-
igation 5, 8 and 14. The identical paths for each test subject was intended to
ensure a greater consistency among trials.

At each of the destinations, the test subjects were asked to mark it with a
sticky-note before proceeding to the next destination. After the last marker
was found, test subjects had to return to the starting point.

A total of two different assessments were conducted on the testing route. In
the first assessment, participants used AR Indoor Navigation as an additional
aid. In the second assessment, they had to complete the task without the
navigation aid during which they were instructed that the order at which they
visit each marker does not matter. During both test trials, each participants
movement trajectory over time was recorded as a quantitative data measure.
As qualitative data, after each test run the participants were asked to complete
a questionnaire that is attached to this report.

6 Results

6.1 Questionnaires

In order to obtain valid results regarding the task workload, the questions of
the NASA Task Load Index (NASA-TLX) were used. The questions provide in-
formation about the psychological stress, physical stress, time exposure, perfor-
mance, exertion and frustration of the participants during each task. Workload
related to the use of the system and contextual information is measured using a
5-point Likert scale. This is a psychometric response scale in which respondents
indicate the extent to which they agree with a statement [5I]. In our conducted
test, the task workload should be assessed by the test takers as follows (1) Very
Low; (2) Low; (3) Average; (4) High; (5) Very high. The arithmetic mean of
each question is shown in Table 2] In addition, the Fleiss Kappa coefficient was
calculated to determine the level of user agreement. This results in & = 0.05 for
navigation with the Magic Leap and k£ = 0.1 for navigation without additional
aids. In both cases, this corresponds to a slight agreement [52].

To investigate whether the results differed with and without the use of the
Magic Leap, the Wilcoxon Rank-Sum (WRS) test, also known as Mann-
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Figure 11: Illustration of the room marker setup from the data generated by

the environment mapper

Mean with ML Std with ML Mean without ML Std without ML

How mentally demanding was the task? | 1,8 0,8

How physically demanding was the task? | 1,5 0,5

How hurried or rushed was the pace of the task? | 2,2 0,7

How su ful were you in accomplishing what you were asked to do? | 2,6 1.2
How hard did you have to work to accomplish your level of performance? | 2.4 09
How insecure, discouraged, irritated, stressed and annoyed were you? | 2,6 0,7

2,0
2,1
2,7
3,7
2,3
1,7

0.6
0,6
0.8
0.8
0.7
0,7

Table 2: Overview of the NASA TLX questionnaire results
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With Navigation Without Navigation
p0 0.446 0.238
Statistic  0.926 0.903

Table 3: Shapiro-Wilk Normality Test

Whitney U test was used on the questionnaire results. The WRS test is often
used in statistical practice for comparing measures when the distributions are
not normal distributed or are not known [53]. One requirement is that the data
be ordinally scaled, which is the case since a 5-point Likert scale was used. The
results tell whether the central tendencies of two independent samples are dif-
ferent. So in this case, the question is whether using the Magic Leap makes a
difference in terms of measuring the task workload.

For this, the respective (per question, with and without ML) supplemental rank
sums R are formed. These are then compared with the critical value W. To
determine the critical value, an alpha must be set, which in this case is put to
0.05. Then the number of answers given per question must be considered, which
is 10. Afterwards, the critical value can be taken from a table, which in this
case is 10. Is the critical value R smaller than the rank sum W it is assumed
that no difference exists between the two measurement results. Is W > R than
it is assumed that there is a difference [54]. However, the test does not say why
this difference between the measurement results occurs or does not occur [55].

The results show that in terms of mental demand R=19,5 and effort to accom-
plish the goal R=20,5, there is no difference whether the individuals used ML
or not. But there are differences in physical demand R=6,5, temporal demand
R=7, performance R=8 and feeling frustrated R=0.

6.2 Task Completion Time

As a quantitative data measure, the total task time was derived from each test
participant’s movement trajectory. A single data point was removed from the
data set generated from the test with AR navigation, due to the very short task
completion time of approximately two seconds. This can be explained by the test
subject accidentally stopping the test without the test administrator noticing
it. The raw data is depicted as histograms in Figures and The mean
of total test time with AR navigation (n=9) is 71.3 seconds (std=23.44s), and
the mean of total test time without AR navigation(n=10) is 46s (std=11.43s).
Both data sets of with and without AR navigation were tested for normality
using the Shapiro-Wilk test as it is the best fitting test recommended for small
sample sizes n<50 [56]. Results of the normality test are depicted in
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Figure 12: Test Completion Times Figure 13: Test Completion Times
With Navigation Aid Without Navigation Aid

6.3 User Position Tracking

Tracking data was also gathered of test participant position over the whole
duration of the test. The raw data has been processed into heatmaps that give
an insight into the movement trajectory of each test subject and how much
time they’ve spent at a certain location. For a qualitative evaluation, Figures
[16] to depict comparisons of different test subject movement tendencies when
conducting the test. Figures and [[5{epict an ideal, best case scenario path.

lllustration of the Optimum Path Without Navigation
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Person2 WithNav Person2 WithoutNav

Figure 16: Participant Nr.2 Trajectory Figure 17: Participant Nr.2 Trajectory
With Navigation Without Navigation

Person3 WithoutNav Person3 WithNav

Figure 18: Participant Nr.3 Trajectory Figure 19: Participant Nr.3 Trajectory
Without Navigation With Navigation
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Person8 WithNav Person8 WithoutNav

Figure 20: Participant Nr.8 Trajectory Figure 21: Participant Nr.8 Trajectory
With Navigation Without Navigation

7 Discussion

Given a 95% confidence interval, the Shapiro-Wilk normality test shows that
both data sets of with and without AR navigation come from a normally dis-
tributed population p0 > 0.05. This indicates that our proposed solution for
navigating between end destinations has worsened test subjects’ ability to finish
the test by 35%. This could be explained by a lack of understandable Ul within
the Client application as it was noted that many test subject appeared to get
confused as to where exactly they need to go once the navigational information
would appear. This suggests that our client application UX design should be
rethought.

The calculation of the Fleiss Kappa coefficient showed that there was only a
slight agreement between the test participants regarding the perception of the
task workload between the two different assessments. This may be due to the
fact that 50 % of the test participants already had experience in using AR de-
vices, such as the ML, while the other 50 % had no touch points with such
devices. Therefore, the subjective perceptions of test participants may differ.

The results show that navigation to different markers was barely mentally de-
manding for the test participants. Both scores are in the lower region of mental
demand and the participants were a bit more united in the evaluation with-
out ML, as shown by the smaller standard deviation. This could be explained
by an overly simplified testing environment and straight forward task even. It
was noted that during test without navigation, most of the test subjects simply
went around the room in one direction, comparing the IDs with the destination
list that they were given. This means that the test setup did not require the
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participants to develop their own strategies. Also, the results of the WRS test
show that it made no statistical difference for participants to perform the task
with or without ML (W=32.5>R=10).

The test participants found navigation with the application less physically de-
manding. Also the WRS test results show that there is a difference here
(W=6.5<R=10). This is positive for the application. It is possible that this
score is due to the fact that the participants were navigated directly to the tar-
gets and did not have to search all markers sequentially in order to reach their
targets. So they didn’t have to physically exert themselves. But it should also
be said that in both cases the score is in the low range.

Also the WRS result supports that the participants felt a difference and were
more rushed without the ML (W=7<R=10). This is an interesting result, also
from the point of view that the participants performed the test with ML before
the test without ML, so they already knew approximately how the test works
and performed it once with ML. Nevertheless, they perceived the second run as
more stressful. Of course, this may also be related to the fact that during the
run with ML the targets were directly recognizable with the help of the arrows.
Thus, they did not have to identify each marker individually.

When it comes to the aspect of how successful the participants felt in achiev-
ing the goals, a difference between the test runs becomes apparent. The WRS
test results also confirms this difference (W=8<R=10). This shows that those
without ML were more certain that they had achieved the goals. This could
be related to the fact that 50% of the participants have no experience with AR
devices and this affects their perception. This would also explain the higher std
when using the ML, as the people with experience felt more confident to have
reached the goals than the people who had not yet used an AR device.

When asked how hard the participants had to work to achieve their level of
performance, there were no significant differences in the responses from the two
test runs (W=20,5>R=10). This shows that in both cases an effort in the low
range was enough to accomplish the level of performance. Similarly how with
mental demand, this could also be attributed to the very simplistic test setup
that did not properly challenge the test subjects.

The result of the last question shows that the participants felt more insecure,
discouraged, irritated and stressed during the test run with the ML. Also the
WSR test supports the difference (W=0<R=10). This result is surprising, since
in previous results the physical demand and how stressed they felt were rated
as lower with ML. The result may be related to the fact that, as already men-
tioned, half of the participants had no experience with AR devices and were
therefore more irritated than in the test run without ML.
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8 Conclusion and Future Work

Our solution proposes a first, working prototype of an indoor navigation system
that proves to work starting from environment mapping down to pathfinding and
guidance. Certain flaws were identified with the current design such as ArUco
marker tracking inaccuracies, as poor Client Application Ul, limited navigation
guidance resolution and a very simplified test setup. Nevertheless this work pro-
vide basis for future work in the area by outlining a baseline architecture and
providing insights of the first-iteration development cycle. Our solution allowed
test subjects to consistently worsen their performance on finding the target des-
tinations based on their higher total task time and higher standard deviation
when using our developed AR navigational system. For the task load, certain
questions had statistically significant differences between using the navigation
and not, this tells that work should be continued on investigating the different
navigation design in more challenging environments.

Our solution does not integrate any of the advanced features, such as misplaced
item recognition by client devices through computer vision, IoT communication
and rerouting to misplaced items by the Navigational Module or testing in a
production environment with multiple devices. For further work on this project,
research could be done on which guidance information is the most effective in
guiding the user to their destinations the fastest. Another point would be to
bring in computer vision to recognize targets and annotate. This way the user
would immediately recognize the target and this could have a positive effect on
the task completion time. Also this work does not investigate how auditory cues
could be added to aid the overall task completion. In addition, on-boarding in
terms of AR device usage would be possible, so that people who have never had
contact with such devices become used to it and are not caught off guard or
confused.
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