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Introduction

The following report describes the six exercises
solved throughout the course on Natural Language
Processing with the goal of creating a multilingual
question answering system using English, Finnish,
and Japanese. Whereas English and Finnish use
the Latin alphabet, Japanese uses four different
alphabets. All of them are included in the data.
Furthermore, Japanese does not separate words by
white spaces and pronouns may be omitted con-
trary to English and Finnish. Finnish on the other
hand is a morphopohonologically diverse language
resulting in various alternations of verbs and nouns
(Clark et al., 2020). For this task, the Answerable
TyDiQA training and validation data for the respec-
tive languages was used (Clark et al., 2020) !. The
dataset is based on the GoldPassage task in the orig-
inal dataset extended with unanswerable instances.
Importantly, each question has an answerable in-
stance and an unanswerable instance making the
classes for binary question classification balanced.
All authors contributed equally.

1 Lab 1: Introduction to NLP

To start with Lab 1, two additional columns were
added to the Answerable TyDiQA dataset: the con-
catenated question and Wikipedia passage associ-
ated with the question (context) and a binary col-
umn indicating whether an answer is available in
the passage (1 otherwise 0).

1.1 Preprocessing

Preprocessing steps include removing Wikipedia
footnotes, punctuation, and superfluous white
spaces. Additionally, a special form of quotation
marks in the Japanese data was removed. All of
these steps may be chosen to skip and tokenize the
data right away. Another common pre-processing
step is the removal of commonly used words, i.e.

"https://huggingface.co/datasets/copenlu/answerable_tydiqa
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stopwords (Denny and Spirling, 2018). In our case,
however, stopwords were kept in the data under
the assumption that they add to the meaning of the
question. Furthermore, the text was not converted
into lowercase in order to keep entities such as
names distinguishable (Denny and Spirling, 2018).

1.2 Tokenization

To tokenize the English and Finnish data, the li-
brary NLTK (Bird et al., 2009) as well as Spacy
(Honnibal et al., 2020) (en_core_web_sm and
fi_core_news_sm) were used. For the Japanese
language, a comparison was done with Spacy
(ja_core_news_sm) and Fugashi (McCann, 2020)
together with the full UniDic tokenization dictio-
nary. Tab. 1 provides an overview of the most
common first and last tokens in the questions of
the respective languages. Clear similarities are ob-
servable between English and Finnish, whereas
Japanese questions show a different pattern. Firstly,
the question word is usually indicated by the last
token. Secondly, the first token of a question is
most commonly a noun or name instead of a verb
as in English and Finnish.

1.3 Vectorization

Once the data is tokenized, it is passed into either
the CountVectorizer or the Tfidf Vectorizer of the
package Sklearn (Pedregosa et al., 2011). Whereas
the CountVectorizer turns documents into sparse
vectors containing the count values of terms, the
TfidfVectorizer considers the term frequency over
all documents as well as the number of documents
including that term to compute weights instead of
the simple count. This is based on the assump-
tion that a term is important for the meaning of a
document if it occurs often in that document. The
relevance of the word diminishes, however, if it
occurs in many documents of the whole corpus
(Christopher et al., 2008). This weighting scheme,



English Finnish Japanese

First token  Last token | First token Last token First token Last token

When born Milloin_When syntyi_born in HA_J apan 2.2

What founded Miki_What on_on [T YD _when

How die Missi_Where kuoli_died 7 * ') 77_America 7-_rice field

Who have Kuka_Cry tarkoittaa_mean -5 world & Z_Where

Where formed Miti_What perustettu_founded %8 _First fu] _what

Whats established | Kuinka_How syntynyt_born T Zft_Who

Which air Mini_I oli_was R 4 /_Germany 721 _Who

Why released Mistd_Where from perustettiin_was established | 2 3 —3_George 13_teeth

In live Miten_How sijaitsee_located ™ 4 ) 7 . _William  »*%_from

On introduced | Mihin_Where pintaala_surface Y 3> _John &5 _be

Table 1: Ten most common first and last tokens for English (NLTK), Finnish (NLTK), and Japanese (fugashi).
Language Input Tokenizer if-idf FI score Acc using the concatenated question and context as well
English QstCtxt NLTK True 0.759 0.747 ) A R .

Finnish ~ Ctxt NLTK False 0.739 0.747 as tf-idf weighting results in a better performance
Japanese PQf:tIg&iessed Fugashi True 0717 0715 except for minor differences in Finnish. However,

Table 2: Best performing binary question classifier per

language.

however, might underestimate the importance of
question words, since their term frequency is rather
low, whereas the document frequency is high. By
concatenating question and context before the tf-idf
weighting, their weights are likely to be even more

skewed.

1.4 Classifier

Classification was performed with logistic regres-
sion which predicts the classes based on the es-
timated probability dependent on the features
(Naseem et al., 2021). Once the data is vector-
ized, it is passed onto the classifier. Herein, we use
the respective function of Sklearn with L2 regular-
isation so that higher coefficients are more costly.
Additionally, the count of overlapping tokens in
question and context can be added as a feature to
account for similarity in the input. However, the
sparse document representations were used without
overlap and investigaton on the effect of overlap is
done in Section 4.

1.5 Results

For each language, different models were ran using
only the question, only the context, and the con-
catenated question and context as input. Tab. 2
provides an overview of the best performing model
per language.

In sum, the tokenizers by NLTK and Fugashi out-
perform Spacy. Furthermore, Fugashi is the only
tokenizer that needs preprocessing steps in order
to enhance performance of the model. Generally,

using the concatenated question and context as in-
put results in only a slightly lower performance.
For all three languages, passing only the question
as input results in the worst performance with an
accuracy of 0.5, since every question has one an-
swerable and one unanswerable instance.

2 Lab 2: Representation Learning

In this section, the binary classifier using sparse
vectors to represent features is extended to use con-
tinuous word representations. These are created
using fastText embeddings for all three languages.
The models in this section are built on the binary
question classifiers from Lab 1 using the concate-
nated question and context as input, weighted by
tf-idf scores and preprocessed only in the case of
Japanese. Following previous results, only the
Japanese data is preprocessed.

2.1 FastText word embeddings

FastText offers 300 dimensional word vectors for
294 languages trained on Wikipedia data using a
skip-gram model (Bojanowski et al., 2017). Words
are handled as bags of character n-grams. In this
way, fastText embeddings are especially useful for
morphologically rich languages, such as Finnish
(Bojanowski et al., 2017). These vectors were cho-
sen since the training data aligns with the Answer-
able TyDiQA data. A newer version of pretrained
word vectors uses Wikipedia and Common Crawl
data, which has advantages for low-resource lan-
guages with only limited Wikipedia data (Grave
et al., 2018).



2.2 Vectorization

Based on Lab 1, the NLTK tokenizer was used for
English and Finnish without preprocessing. The
preprocessed Japanese data was tokenized using
Fugashi. In a next step, the respective fastText
word vectors are assigned to the tokens. Out-Of-
Vocabulary (OOV) tokens are represented by the
mean of all available fastText embedding vectors
for each language to account for the distribution of
possible values in the 300 dimensions. The embed-
ding is pooled by calculating the weighted average
based on tf-idf scores resulting in one vector per
document of the length of 300. Hereby, differing
importance of words within the document is ac-
counted for. This approach is compared to using
the count values of words in a document when
averaging, i.e. only using the continuous word
representations.

2.3 Results

The results of the different models are displayed in
Tab. 3. For all three languages, the binary question
classifiers based on only the tf-idf scores perform
best followed by the models using only the contin-
uous word representations. In the case of Finnish,
there is only a 0.01 decline in accuracy in the fast-
Text model compared to the tf-idf model. The com-
bination of the word representation, i.e. pooling the
embeddings using the tf-idf weighted average, per-
forms worst. In the Japanese model, performance
between the continuous and the combined model
does not differ substantially.

English F1 score Accuracy
Tf-1df 0.759 0.747
fastText 0.691 0.674
fastText & Tf-Idf  0.683 0.657
Finnish F1 score Accuracy
Tf-1df 0.733 0.723
fastText 0.733 0.722
fastText & Tf-Idf 0.718 0.688
Japanese F1 score Accuracy
Tf-1df 0.72 0.717
fastText 0.683 0.659
fastText & Tf-Idf  0.683 0.659

Table 3: F1 score and accuracy per language and model.
English & Finnish: NLTK, Japanese: preprocessed &
fugashi.

The results suggest that using only sparse word
representations based on tf-idf scores is the most
efficient and best performing option so far. In-
terestingly, arguing on a theoretical basis, the bi-
nary question classifier should perform better using

the continuous word representations accounting for
the contextual similarity of words. Sparse vector
representations, however, do not account for this
(Naseem et al., 2021). Firstly, a possible reason
for the lower performance of the models using con-
tinuous word representations might be the amount
of OOV tokens. All OOV tokens are represented
by the same vector, however, the original tokens
might be distant from each other in the linguistic
space. Secondly, the concatenation of question and
context before the vectorization might result in an
inadequate document representation. An alterna-
tive approach to test in future applications is the
embedding of question and context independently
from each other and then concatenating the vectors
instead of embedding them as one.

3 Lab 3: Language modelling

The third lab’s key objective is training binary ques-
tion classifiers based on sentence representation
from fine-tuned models. To achieve this goal, input
is defined to the model by concatenating a question
with a context. Herein, the model has all the in-
formation to find the relation between the question
and the context tokens and outputs a representation
with an answerability property. Given the subtask
of sentence generation, we chose the autoregressive
model GPT-2. Hereby, only the question is passed
as input in order to generate a context.

3.1 Fine-tuning

To steer the generation part we need to introduce a
couple of new tokens <question> and <context>(
see Fig. 1), this entails fine-tuning of three different
pretrained GPT-2 models on English, Finnish, and
Japanese (see Tab. 4).

Language Model name

English distilgpt2

Finnish Finnish-NLP/gpt2-finnish
Japanese  rinna/japanese-gpt2-medium

Table 4: Pretrained GPT-2 models.

Figure 1: Input separation with <question> and <con-
text> tokens

Another problem is that the context data within
the MinSpan dataset is much longer. Whereas in
the Answerable TyDiQA dataset, it is rarely the case



that the context data exceeds the GPT-2 limitation
of 1024 tokens. Thus, this problem is only relevant
for fine-tuning since the binary question classifier
will be trained done on Answerable TyDiQA dataset.
So the solution can be described by the following
steps:

» Concatenate a question with a context

» Tokenize the concatenated string into token
IDs

* Annotate all tokens, whether they are part of
question, context, or padding(see Fig. 2)

Token Type Ids

Figure 2: Tokens annotation

e Formulate ground truth. We are only inter-
ested in the improvements for predicting con-
text correctly. Thus we mark <question> and
<pad> tokens with -100 to avoid computing
loss(cross entropy) for them.

* Split token_ids, token_type_ids and ground
truth into chunks of size 1024 tokens or less.

3.2 Sampled sentences analysis

The major technique for text generation we used
was nucleus sampling, primarily for two reasons.
The first justification comes from this work, (Holtz-
man et al., 2019), in which it is claimed that human
language does not adhere to the high likelihood of
subsequent words. The second argument is based
on practical testing, which revealed that greedy and
beam searches frequently produced text that was
illogical or trapped in endless repeats.

3.2.1 English sampled sentences

The model was sampled for semantically different
sentences that contain fictional and real subjects,
as well as questions of sensitive nature. The model
was challenged on interpreting question words as
well as probed for bias, dealing with poor grammar
and word ambiguity. Tab. 5 depicts samples gener-
ated from the model and the following patterns are
observed:

* In all cases, the model was able to expand on
the main subject of the question

* Elaboration on identified key entities from the

question, Q1-Q5

* Improved performance with correct grammar,

Q1 vs Q2

* Fictional Latin names when encountering ani-

mals, Q1-Q3

* Poor language disambiguation, Q4

* Indirect response and bias towards religion,

Q6-Q7

* Generally answers not based on facts, Q3, Q5-

Q7

Question

Answer

1. Where a polar bear lives?

2. Where does a polar bear
live?
3. A tomato bear?

A polar bear (Carassius auratus) is a species of
polar bear that resides in the Canadian prairies.
The Antarctic bears are polar bears that have lived
on the North Pole about 3,500 years ago.

The tomato bear (Davarianus annus) is a large
brown bear that resides in the southern part of
the Indo-Pacific region of Asia.

4. How old is Marry?

5. How old is Elon Musk?

Marry refers to any aspect of marriage between a
man and a woman.

Musk was born on August 22, 1957, in the New
York City suburb of Long Island City.

6. What is the best religion?

7. Is there a best religion?

Islam is a religion in the rest of the world. Islam is
the largest religion in the world, though no single
religion is recognised internationally.

Christianity is a widely held religious view within
the United States, with over 70% of Americans

identifying themselves as Christian.

Table 5: Samples from english fine-tuning

3.3 Evaluation

The metric of perplexity is used to intrinsically
assess the three refined language models (see Tab.
6).

Language Perplexity
English 86.942
Finnish 53.842
Japanese  59.706

Table 6: Evaluation of language model

Perplexity is a measure to account for the con-
fusion of a language model when trying to predict
subsequent tokens. The English model seems to
produce a wider range of possible next tokens com-
pared to the Finnish and Japanese model. However,
due to the different characteristics of the languages
and pretrained GPT-2 models, direct comparison
between the results are hardly possible.

3.4 Classifier

Logistic Regression was used for classification. As
the input we were using last hidden state, which has



following dimension 1xNx768, where N is number
of layers. To make input compatible with Logistic
Regression we summed the tensor along N layers
to reduce it to 1x768. Tab. 7 displays the F/ score
and accuracy of the corresponding binary question
classifier for each language. For the English and
Finnish model, the performance has improved com-
pared to sparse vector representations, whereas in
the case of Japanese the tf-idf model still results in
the best performance.

Language F1I score Accuracy
English 0.75 0.76
Finnish 0.74 0.77
Japanese  0.66 0.71

Table 7: F1 score and accuracy per language.

4 Lab 4: Error Analysis and
Interpretability

In week 4, a comparison was done between the bi-
nary classifier from Lab 1 based on tf-idf weighting
and the combined classifier from Lab 2 based on
fastText word embeddings pooled by the average
using tf-idf scores.

4.1 Comparison of the Models

In our case the simple model based on tf-idf vectors
in Lab 1 performed considerably better than the
continuous word representations in Lab 2 in all
three languages (see Tab. 3). In the following, the
confusion matrices will be investigated as well as
the effect of the input length, the overlap of tokens
between question and context, and the question
word on the classification.

4.1.1 English

Both classifiers are biased towards answerable
questions with a stronger bias in the combined
model of Lab 2. Consequently, the perfor-
mance is slightly lower for unanswerable questions.
Whereas the classifier from Lab 1 classifies shorter
inputs as unanswerable, both incorrectly and cor-
rectly, the classifier from Lab 2 classifies shorter
inputs as answerable in the incorrectly classified
questions. Furthermore, the model from Lab 1
struggles with the classification of unanswerable
>What’-questions (see Appendix A). In both cases
the overlap of tokens does not indicate a clear pat-
tern regarding the classification.

4.1.2 Finnish

Again, both classifiers are more likely to classify
an instance as answerable resulting in a slightly
better performance on that class. Whereas the
incorrect classification in the model from Lab 1
are not affected by the input length, the model
from Lab 2 classifies shorter inputs as answer-
able and longer inputs as unanswerable. Based
on question words, the classifier from Lab 1
performs well on When’-questions. In unan-
swerable instances, the performance is worse for
"What’-questions, for answerable questions for
’Mihin_Where’- and *"Miten_How’-questions. The
combined model shows a similar pattern along-
side a higher mis-classification of answerable
"’Kuka_Cry’- and "Miksi_Why’-questions and unan-
swerable "Mikd_What’-question (see Appendix B).
The overlap of tokens does not indicate a clear
pattern.

4.1.3 Japanese

Contrary to the English and Finnish models as well
as the combined Japanese model from Lab 2, the
model from Lab 1 is not particularly biased to-
wards answerable questions. Whereas the model
from Lab 2 is not affected by the input length,
the model from Lab 1 is prone to classify shorter
inputs as unanswerable. As in the case of En-
glish and Finnish, the model from Lab 1 struggles
with correctly classifying unanswerable 1] _what’-
questions (see Appendix C). However, both models
are not substantially affected by the overlap of to-
kens in the question and context.

4.2 Detailed Error Analysis of Lab 1

Due to the more elaborate knowledge on the En-
glish language, the detailed error analysis focuses
on the English model from Lab 1 using the sparse
tf-idf vectors. Additionally to the above described
analysis, we have examined the count of conjunc-
tion words (for, and, nor, but, or, yet, so), nega-
tions (not, no), and numeric tokens in the input.
Furthermore, Fig. 3 provides an overview of the
10 most positive and most negative weighted to-
kens in the logistic regression. Instances classified
as answerable have a higher count of conjunction
words than instances classified as unanswerable.
Regarding negations, the opposite pattern can be
observed. Inputs with a higher count of negations
are classified as unanswerable. The biggest differ-
ence can be seen in the count of numbers, where in-
puts classified as answerable contained on average



around five numeric tokens and inputs classified
as unanswerable on average only approximately
three. Likewise, Fig. 3 shows the comparatively
high positive weights for numbers from 1 to 3 in
the logistic regression. This leads us to the assump-
tion that the model reacts sensitively to the count
of numeric tokens. Furthermore, the model seems
to put high negative weights on the question mark
as well as common question words, such as *"What’
and "When’. 2
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Figure 3: Top 10 positive and negative features in the
logistic regression using tf-idf weights.

4.3 Adversarial Instances

Based on the error analysis above, we tested our
model by adding and deleting negation words, con-
junction words, numbers, and truncating the input.
The following four examples fooled the model into
an incorrect prediction that was previously correct.
The removal of all numeric tokens for the answer-
able instance of *What organization did the terror-
ists on 9/11 belong to?’ resulted in a classifica-
tion as unanswerable. For the answerable example
’Which sports are included in athletics?’, adding a
"not’ token to the end of the context led the model
to mis-classify the instance as unanswerable. In
the case of the answerable instance of "How do
you separate plasma from blood?’, we deleted the
conjunction word ’or’ in the context to trigger a
classification as unanswerable. Lastly, truncating
the input of the answerable instance *When was
CSS developed?” down to 100 tokens, so deleting
the last 11, resulted in a classification as unanswer-
able even though the answer was still included. See
Appendix E for examples.

A manual inspection of *What’-questions revealed two
incorrectly annotated data points (see Appendix D).

5 Lab 5: Sequence Labelling

The aim of Lab 5 is to develop a span-based mono-
lingual question-answering system for English,
Finnish, and Japanese that predicts which tokens
of a given context paragraph are the likely answer
to a proposed question. Prediction is done using
10B tagging pattern (Ramshaw and Marcus, 1999).

5.1 Data Preprocessing

For extracting tokens and embeddings, a pre-
trained embeddings model BPEmb (Heinzerling
and Strube, 2018) is used due to its large maxi-
mum vocabulary size (200k), multilingual support
and byte-pair encoding technique that helps solve
the unknown word problem through subword seg-
mentation as well as its memory efficiency, when
compared to FastText (Heinzerling and Strube,
2018). The embeddings were extracted as 300-
dimensional vectors with 200k vocabulary size. Af-
ter tokenization the question and context is concate-
nated to form a prompt for the model, after which
the /OB label vector is mapped.

Some valid datapoints were dropped due to the
mapping algorithm not being able to map the an-
swer to the context, and due to cases of inconsistent
punctuation symbols in the dataset answers, see Ap-
pendices F and G. Appendix M depicts an overview
of the parsed datapoint statistics.

Class weights for the I, O, B labels are calcu-
lated based on normalized inverse-frequency since
re-sampling is not a possibility. Other techniques,
such as inverse-square frequency or effective num-
ber of samples (Cui et al., 2019) could also be
tested for class balancing.

5.2 Sequence Labeling Model

To perform the sequence labeling, a bi-directional
Long-Short Term Memory (BiLSTM) Recurrent
Neural Network (RNN) architecture was used for
training a model. Hereby, the risk of vanish-
ing/exploding gradient is decreased and informa-
tion retrieval from both preceding and following to-
kens when predicting an IOB label is possible (Pas-
canu et al., 2013) A second BiLSTM model was
used in an encoder-decoder architecture with an
implementation of a beam-search algorithm upon
decoding the output. Both models use a Cross
Entropy loss function with added class weights to
balance /OB labels. See Appendix J for summary
of the hyperparameters of the final training, that
yielded the best results.



5.3 Evaluation and Results

The following Fig. 4 and 5 depict loss and overall
F1 score for all three languages of the basic and
beam-search BiLSTM models. The figures show
improvement with each training epoch although
the performance varies across languages.

Fig. 5 depicts training of the LSTM model with
beam-search which does not follow a similar im-
provement pattern as the basic model. The beam-
search, the maximum F/ values are ignored for
the first 5 epochs due to the models being biased
towards O label and the best values are considered
the ones of the last epoch. For a closer analysis, F'/
scores from evaluation are summarized in Tab. 8.

basicLSTM

F1_english

Max F1_english
Loss_english

Min Loss_english
F1_finnish

Max F1_finnish
Loss_finnish

Min Loss_finnish
F1_japanese
Max F1_japanese
Loss_japanese
Min Loss_japanese

F1 and Loss

0.0 — T T T T T T
1] 10 20 30 40 50 60 7O
Epoch

Figure 4: Basic BILSTM training and validation
overview

8.33 beamSearch
—— F1_english
0.30 4 ® Max F1_english
Loss_english
Min Loss_english
0251 —— F1_finnish
® Max F1_finnish
 0.20 4 . 20— Loss_finnish
i ® Min Loss_finnish
: —— F1_japanese
, 0157 ® MaxF1 japanese
' —— Loss_japanese
0.10 1 ® Min Loss_japanes
0051 0,04
.03
ool — T——————g00
0 10 20 30 40 50 o0 70
Epoch

Figure 5: Beam search (size=1) training and validation
overview

Table 8: Per-label overview of F1 scores. Epoch=75

F1 Basic F1 Beam=1 FI1 Beam=2
O_Eng 0.99 0.58 0.06
B_Eng 0.22 0.04 0.00
I_Eng 0.21 0.05 0.04
O_Fin 0.98 0.49 0.42
B_Fin 0.35 0.02 0.02
I_Fin 0.21 0.07 0.07
O_Jap 1.00 0.72 0.11
B_Jap 0.55 0.03 0.01
I_Jap 0.57 0.01 0.01

5.4 Discussion and Conclusions

It is expected that the model with beam-search
would yield similar or better results because of
deriving a better global average if the beam size
is greater than 1. The upward trending F1 scores
and downward trending loss function in Fig. 5
indicate that the model has not converged yet
and training should be continued. Otherwise the
low scores, when comparing BeamSearch(n=1) to
BeamSearch(n=2), may be an indication of a bug
in the code that should be reviewed. Qualitative
evaluation showed that the basic model was able
to roughly answer the questions although in some
cases non-continuous spans were predicted, as well
as multiple B labels per span. This pattern was
observable in all languages, more prominently for
the beam-search model, see Appendices H and L.
Sometimes the models also predicted the question
as part of the answer, this was more prominent
for the beam-search model. The results could still
be further improved by enhancing the architecture
with a CRF extension (Huang et al., 2015) to better
encode neighbour tag information. The current ar-
chitecture with beam-search would not be usable
in production due to the inconsistent B and [ se-
quences, hence the training should be repeated.

6 Lab 6: Multilingual QA

The task of Lab 6 is to develop a two-part multi-
lingual model system, with one model performing
answer estimation through sequence labeling and
another model performing binary classification of
answerability. Modeling multilingual QA is non-
trivial due to the topological diversity of languages,
meaning the degree to which a meaning is conveyed
using different linguistic expressions (Clark et al.,
2020), as well as structural differences (K et al.,
2019). Nevertheless, multilingual models such as
M-BERT and XLM-RoBERTa (XLM-R) show an
impressive cross-lingual performance on sequence



labeling tasks (Lample and Conneau, 2019) and
hence will be used for this lab.

It is expected that English and Finnish would
cross-map better during the evaluation than either
of the languages with Japanese due to the charac-
teristics of the languages (Clark et al., 2020). Simi-
larly, Japanese should map better to Finnish than
to English, due to those languages sharing more
similarities (Clark et al., 2020).

6.1 Data Preprocessing

The preprocessing pipeline has been reused from
Lab 5, with the exception that tokenization was
done with each of the models’ respective tokeniz-
ers. Question-context pairs over 512 tokens were
filtered out due to M-BERT limitations (Ollinger
et al., 2020). Dropping datapoints was done due to
the low number of long sequences present within
the dataset, although other hierarchical or trunca-
tion methods (Sun et al., 2019) could also be used
and tested. The tokenized context-answer mapping
algorithm ended up in failing to map one-to-one
certain entries, which were logged as fails, see Ap-
pendix F for the algorithm. When creating the label
vector for binary classification, the class weights
for ANS and UNANS were not balanced. See Ap-
pendix N for post-tokenized datapoint summary.

6.2 Sequence Labeler and Binary Classifier

To draw a side-by-side comparison between the
M-BERT(Cased) and XLLM-R models, both were
trained and evaluated seperately on the sequence
labeling task. The binary classifier was then trained
on the last layer’s hidden states of each model
and corresponding ground-truth label vector. Both
models were trained on the same hyperparameters
shown in Appendix L. Optimizer and scheduler
were also reused from Lab 5, as well as the binary
classification logistic regression model from Lab 3.

6.3 Results

Fig. 6 shows accuracy values for the binary classifi-
cation with a high outlier for the Japanese XLM-R
model. Fig. 7 shows that for sequence labeling,
M-BERT generally has a better cross-lingual trans-
fer in terms of smaller variance over the F'/ scores,
as well as higher F/ scores per language with the
exception of training on Finnish and evaluating
on English where XLLM-R performs better with a
0.13 increase. See Appendix K for plots of each
language training and evaluation over time.

Bioay lassfication Accuracy XUAR. E=75 Binry Clssfication Accuracy WOERT €75

Figure 6: Bin.Class: Left XLM-R, Right M-BERT

Figure 7: Seq.Lab: Left XLM-R, Right M-BERT

6.4 Discussion and Conclusions

The results from the confusion matrix may also be
misleading as they depict F/ score output from the
last training epoch, as opposed to the best epoch.
The sequence labeling results of XLM-R generally
trends towards Finnish and English being closer
to each other than Japanese which has a more
varied performance, see Appendix K. This could
be explained by more lingual commonalities be-
tween English and Finnish than either of them with
Japanese (Clark et al., 2020).

Although the results could be skewed by flaws
in the training loop, namely many datapoints were
dropped when failing to map answer to context, see
Appendix N and F, and unbalanced binary classi-
fication labels. Fixing these issues could lead to
higher FI scores.

XLM-R is trained on Common Crawl data (Con-
neau et al., 2020) and a larger dataset than M-BERT,
whereas M-Bert is trained on Wikipedia data and
thus could be more accustomed to the Answerable
TyDiQA dataset. This may explain the lower perfor-
mance of XLM-R, as expected per (Hu et al., 2020).
XLM-R has a significantly worse performance in
Japanese training than for M-BERT, this could be
affected by the smaller amount of datapoints that
XLM-R was trained on, see Appendix N for the
datapoint overview.

Binary classification results present accuracy, al-
though it may be misleading because the model is
biased towards unanswerable questions due to the
imbalanced datapoints as well as imbalanced class
weights. Hence balancing class labels should be
done and model should be re-evaluated.
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Figure 8: Classifications by starting token, i.e. question
word - English sparse model.

Correct and incorrect classifications by question
words in the English combined tf-idf and fastText
model:
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Figure 9: Classifications by starting token, i.e. question
word - English combined model.

B Lab 4. Investigation on Question
Words in Correct and Incorrect
Classifications - Finnish

Correct and incorrect classifications by question
words in the Finnish tf-idf model:
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Figure 10: Classifications by starting token, i.e. ques-
tion word - Finnish sparse model.

Correct and incorrect classifications by question
words in the Finnish combined tf-idf and fastText
model:
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Figure 11: Classifications by starting token, i.e. ques-
tion word - Finnish combined model.

C Lab 4. Investigation on Question
Words in Correct and Incorrect
Classifications - Japanese

Correct and incorrect classifications by question
words in the Japanese tf-idf model. Starting token
of a question corresponds to the last token in the
input question:
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Figure 12: Classifications by starting token, i.e. ques-
tion word - Japanese sparse model.

Correct and incorrect classifications by question
words in the Japanese combined tf-idf and fastText
model. Starting token of a question corresponds to
the last token in the input question:
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Figure 13: Classifications by starting token, i.e. ques-
tion word - Japanese combined model.



D Lab 4. Incorrectly Annotated
Datapoints



question_text: *What is the surface
area of the human cortex?” docu-
ment_plaintext: ’For species of mam-
mals, larger brains (in absolute terms,
not just in relation to body size) tend
to have thicker cortices.[6] The small-
est mammals, such as shrews, have a
neocortical thickness of about 0.5mm;
the ones with the largest brains, such
as humans and fin whales, have thick-
nesses of 2.3-2.8mm. There is an
approximately logarithmic relation-
ship between brain weight and corti-
cal thickness.[6] Magnetic resonance
imaging of the brain (MRI) makes
it possible to get a measure for the
thickness of the human cerebral cortex
and relate it to other measures. The
thickness of different cortical areas
varies but in general, sensory cortex
is thinner than motor cortex.[7] One
study has found some positive asso-
ciation between the cortical thickness
and intelligence.[8] Another study has
found that the somatosensory cortex is
thicker in migraine sufferers, though
it is not known if this is the result
of migraine attacks or the cause of
them.[9][10] A later study using a
larger patient population reports no
change in the cortical thickness in mi-
graine sufferers.[11] A genetic disor-
der of the cerebral cortex, whereby
decreased folding in certain areas re-
sults in a microgyrus, where there
are four layers instead of six, is in
some instances seen to be related to
dyslexia.[12] The cerebral cortex de-
velops from the most anterior part,
the forebrain region, of the neural
tube.[29][30] The neural plate folds
and closes to form the neural tube.
From the cavity inside the neural tube
develops the ventricular system, and,
from the neuroepithelial cells of its
walls, the neurons and glia of the ner-
vous system. The most anterior (front,
or cranial) part of the neural plate, the
prosencephalon, which is evident be-
fore neurulation begins, gives rise to
the cerebral hemispheres and later cor-
tex.[31]” annotation: 'answer_start’:
[295], answer_text’: [’2.3-2.8mm’]
Correct annotation: *answer_start’: [-
1], answer_text’: [’]

Box 1: Instance of incorrect annotation regarding an-



question_text: *What is the most
common type of edible mushroom?’
document_plaintext: ’Agaricus
bisporus dominates the edible mush-
room market in North America and
Europe, in several forms. It is an
edible basidiomycete mushroom
native to grasslands in Europe and
North America. As it ages, this
mushroom turns from small, white
and smooth to large and light brown.
In its youngest form, it is known as
the ’common mushroom’, ’button
mushroom’, ’cultivated mushroom’,
and ’champignon mushroom’. Its
fully mature form is known as ’porto-
bello’. Its semi-mature form is known
variously as ’cremini’, “baby-bella’,
’Swiss brown’ mushroom, Roman
brown’ mushroom, ’Italian brown’
mushroom, or ’chestnut’ mush-
room.[8][9][10][11] annotation:
“answer_start’: [119], answer_text’:
['basidiomycete mushroom’] Correct
annotation: ’answer_start’:  [0],
answer_text’: [’ Agaricus bisporus’]

Box 2: Instance of incorrect annotation regarding short-

est possible answer

E Lab 4. Examples of Adverserial

Instances

Four examples are provided of modified input that
fooled the model to classify the question with an

opposite label.

Original: *What organization did
the terrorists on 9/11 belong to?
Two weeks after the September
11 attacks, the Federal Bureau of
Investigation connected the hijackers
to al-Qaeda,[1] a global, decentralized
terrorist network. In a number of
video, audio, interview and printed
statements, senior members of
al-Qaeda have also asserted respon-
sibility for organizing the September
11 attacks.[2][3][4] It is believed that
Osama bin Laden, Khalid Sheikh
Mohammed, and Mohammed Atef
were the ones who plotted the attacks
after meeting together in 1999.[5]
It is also believed Khalid Sheikh
Mohammed was the one who planned
the attacks[5] and that Atef was the
one who organized the hijackers.[5]

Modified: *What organization did the
terrorists on 9/11 belong to? Two
weeks after the September attacks, the
Federal Bureau of Investigation con-
nected the hijackers to al-Qaeda,[] a
global, decentralized terrorist network.
In a number of video, audio, interview
and printed statements, senior mem-
bers of al-Qaeda have also asserted re-
sponsibility for organizing the Septem-
ber attacks.[][][] It is believed that
Osama bin Laden, Khalid Sheikh Mo-
hammed, and Mohammed Atef were
the ones who plotted the attacks after
meeting together in .[] It is also be-
lieved Khalid Sheikh Mohammed was
the one who planned the attacks[] and
that Atef was the one who organized
the hijackers.[]’

Box 3: Changed into False Negative by removing num-

bers



Original: >Which sports are included
in athletics? Athletics is a collection
of sporting events that involve com-
petitive running, jumping, throwing,
and walking.[1] The most common
types of athletics competitions are
track and field, road running, cross
country running, and walking race.’

Modified: *Which sports are included
in athletics? Athletics is a collection
of sporting events that involve compet-
itive running, jumping, throwing, and
walking.[1] The most common types
of athletics competitions are track and
field, road running, cross country run-
ning, and walking race. not’

Box 4: Changed into False Negative by adding negation

Original: 'How do you separate
plasma from blood? Blood fraction-
ation is the process of fractionating
whole blood, or separating it into
its component parts. This is typ-
ically done by centrifuging the blood. ’

Modified: ’How do you separate
plasma from blood? Blood fraction-
ation is the process of fractionating
whole blood, separating it into its com-
ponent parts. This is typically done by
centrifuging the blood. ° Changed
into False Negative by removing con-
Jjunction word

Box 5: Changed into False Negative by removing con-
junction word

1
2
3
4
5
6
7
8
9

10
11

Original: "When was CSS developed? CSS
was first proposed by Hakon Wium Lie on
October 10, 1994.[19] At the time, Lie was
working with Tim Berners-Lee at CERN.[20]
Several other style sheet languages for the
web were proposed around the same time,
and discussions on public mailing lists and
inside World Wide Web Consortium resulted
in the first W3C CSS Recommendation
(CSS1)[21] being released in 1996. In
particular, a proposal by Bert Bos was
influential; he became co-author of CSSI,
and is regarded as co-creator of CSS.[22]

Modified: *When was CSS developed? CSS
was first proposed by Hakon Wium Lie on
October 10, 1994.[19] At the time, Lie was
working with Tim Berners-Lee at CERN.[20]
Several other style sheet languages for the
web were proposed around the same time, and
discussions on public mailing lists and inside
World Wide Web Consortium resulted in the
first W3C CSS Recommendation (CSS1)[21]
being released in 1996. In particular, a pro-
posal by Bert Bos was influential; he became
co-author of CSS1,

Box 6: Changed into False Negative by limiting the
input length to 100 tokens

F Lab 5. Answer Token Mapping to
Context

Function below is pseudo-code of how a tokenized
answer is mapped to a tokenized prompt to deter-
mine its starting-ending indices within the prompt.
It assumes that the prompt will contain the answer
as a continuous sequence of tokens.

def getStartEndIndices (prmpt, ans):
if len(ans) == 0:

return (-1, -1)
sll = len(ans)
tmp = (1 for i, e in enum(prmpt) if e == ans[0])
for ind in tmp:

comp = prmpt[ind : ind + sll]

if comp == ans:

return (ind, ind + sll1 - 1)

return (-1, -1)

G Lab 5. Failed Answer Mappings

Examples of some of the question+context tok-
enized sequences that the mapping algorithm failed



to map the answer indices to. Ground truth is high-
lighted with bold and differences in tokenization

are highlighted with underline

Prompt: [ what’,’ percentage’,’ of’,”’
the’, ’ american’, ’ population’, ’ is’,’
vegetarian’,’?’, ” according’, ’ to’,” a’,
> report’, ” in’, > 0000,’, ’ the’, ’ num-
ber’,’ of’,’ consumers’, ’ claiming’,
> to’, ’ be’, ’ vegan’, ’ has’, ’ risen’,’
to’,” 0%’, ’ in’, ’ the’, " us’, ’., [,
000, ’T’, > in’, * 0000,”,” a’, ’ harris’,
> poll’, * national’, > survey’, * of’, ’
0,000’, > adults’, * aged’, ’ 00°, > and’,
> over’,’ found’, ’ that’, ’ eight’, * mil-
lion’, ” americans’,’,’,” or’,” 0.0%,’,
> ate’, ’ a’, ’ solely’, ’ vegetarian’, ’
diet’, ’,’, > and’, ’ that’, ’ one’, ’ mil-
lion’,”;,” or’,” 0.0%,’,* ate’,” a’,”’
strictly’, * vegan’, * diet’, ’.”, ’[*, *000’,
"T'1 Answer: [70.0%°]

B

’ ’

Box 7: Comma missing in answer

Prompt: [’ milloin’, ’ charles’, * fort’,
> syntyi’, ’?’,’ charles’, ” hoy’, * fort’,
> (0., elokuuta’, ’ (°, ’joidenkin’, ’
lihteiden’, > mukaan’, ’ 0.)’, > 0000°,
> 7,707, toukokuuta’, * 0000)’, ’
oli’, ’ yhdysvaltala’, ’inen’, * kirjail-
ija’, > ja’, ’ paran’, ormaal’, ’ien’, ’
ilmididen’, * tutkija’, ’.’]

Answer: [’0., ’elokuuta’, °’(,
’joidenkin’, ’ldhteiden’, ‘'mukaan’,
’0.)’, ’0000°]

Box 8: Parenthesis missing before "0."

Prompt:

[__HAFLERI, I
WL O RR, AR, I
TYA,Y, M CRARER,
Nz ‘i” aWﬁT-s, sk_a, s(’, sEzkj—_ L
E7 o vy —,0p, 08, BEiR,
HREC, AR E A, D TR,
0T 0 PR
— LA e R ), DR
D, CHAT L L, BB, E
5, FHS O, WEER, C,
Wb B, EHD R, T,
N G A 1
PR FE SROTIRCNE
[ B, TH B, ]

Answer: [’:Wft’, K—,°C,’B=&

FLETFO U= 0,08,
R, FRE’)

Box 9: Unicode underscore generated during tokeniza-
tion

H Lab 5. Basic LSTM Predictions

One example per language is depicted from the
beamsearch model taken from the last, 75th train-
ing epoch. Ground truth is highlighted bold and
predicted label is shown in the parenthesis.

Prompt:
kauan ko lasia on valmistettu ? vanhin
tunnettu lasi laatu on alkali kal kki
lasi , jota valmistetaan so odan ,
hiekan ja kalkin seoksesta . egyptissd
siitd valmistettiin lasit ettuja kivi
helmii jo noin vuonna 0000 eaa . [ 0
] jo varhain havaittiin , ettd lasi voitiin
saada vdrill iseksi lisddmilld siihen
eri malmeja . tillaista virillistd lasia
kaytettiin keramiikan lasit ukseen
seki jalokivien jiljit elmiin . [ O ]

Pred: 0000(B) eaa(I)

Box 10: Basic LSTM Finnish answer predition



7 Prompt:

FEEE Sy A —3E8 X WD &L
7220000 F0H00H, 77>
A EHANVT, TIVA, X
SR, AAA, FTUR—D,
N)VF—, Avz—Fv, AR
A2 D0 rE(HL., SEEIE.
AT —F vl ARA VIT 2H
Bz enTEd., Frv—
7L 77 VAN R L7z) 5%
Fo ., RO Vv HI—FKEM
ik BN D 2k 2R L 72 [ 0],
[0 H 00 HEFTnoHMT M
W% T EEY Y 72—l (i
FR:fifa)] & WD, HTH00
% D fifa #22 (fifa congress ) 1% .
75V AD AR=Y G K us
f sa (union des soci ét és francga ises
de sports ath 1é ti ques ) D 7 v h7KR
—VEEBLBRH(TITVANKE
HEEAE YD OR—)L - FT
V(7T VAN) ZAN fifa B E
WEH L, ZDeE T TV
00 ETH-o7-, EHIX. T
MOETF o703, FORIz, =
E AT 0 e (I 2 A @
A OIH T HIR), FIv . A
—ZARNVT . ARVT ., NVUH
)—D GHhET0DD FHE Hilg
D B2 fita §% 37 BAED 0000 4
WM L7101, BN BAATIE
oM fifa ik A=) - 7—
VW I74 = (AFXIVAN, TV
T3V R Yy e LRk bk
YRRz, 7 7Y A7 530000
FIZME L0 B TH 5,

Pred: 0000(B) (1) 0(I) H () 00(I)
H @)

Box 11: Basic LSTM answer estimation Japanese

I Lab 5. LSTM-BeamSearch Predictions

One example per language is depicted from the
beamsearch model taken from the last, 75th train-
ing epoch. Ground truth is highlighted bold and
predicted label is shown in the parenthesis.

Prompt: What is a way to increase
your wound healing speed ? wound
care enc ourages and speeds wound
healing via cleaning and protection
from rein jury or infection . de-
pending on each patient ° s needs
, it can rang e from the simplest
first aid to entire nursing specialties
such as wound , ost omy , and conti-
nence nursing and burn center care .

Pred: encourages(B) and(I) speeds(I)
wound(I) healing(I) via(I) cleaning(I)
and(I) protection(I) from(I) rein(I)
jury(I) or(I) infection(I) .(I) depend-
ing(I) on(I) each(l) patientI) ’(I)
s(I) needs(I) ,(I) it(I) can(I) range(I)
from(I) the(I) simplest(I) first(I) aid(I)
to(I) entire(I) nursing(I) specialties(I)
such(I) as(I) wound(I) ,I) ost(I)
omy(I) ,(I) and(I) continence(I) nurs-
ing(I) and(I) burn(I) center(I) care(I)
(D

Box 12: Beam search answer estimation for English




Prompt:
kauan ko lasia on valmistettu ? vanhin
tunnettu lasi laatu on alkali kal kki
lasi , jota valmistetaan so odan ,
hiekan ja kalkin seoksesta . egyptissa
siitd valmistettiin lasit ettuja kivi
helmii jo noin vuonna 0000 eaa . [ 0
] jo varhain havaittiin , ettd lasi voitiin
saada viri 1l iseksi lisddmalla siihen
eri malmeja . tillaista virillistd lasia
kdy tettiin keramiikan lasit ukseen
sekd jalokivien jdljit elmiin . [ O ]

Pred:

tunnettu(B) lasi(I) laatu(I) on(I) al-
kali(I) (I) kal(I) kki(I) (I) lasi(I) ,(I)
jota(I) valmistetaan(I) so(I) odan(I)
,(D hiekan(I) ja(I) kalkin(I) seok-
sesta(l) .(I) egyptissa(l) siitid(I) valmis-
tettiin(I) lasit(I) ettuja(l) kivi(I) -
(D helmii(I) jo(I) noin(I) vuonna(I)
0000(I) eaa(D) .(I) [(D) OM 1)
jo(D) varhain(I) havaittiin(I) ,(I) etta(I)
lasi(I) voitiin(I) saada(I) varill(I)
iseksi(I) lisdamalla(I) sithen(I) eri(I)
malmeja(l) .(I) téllaista(I) vérillista(I)
lasia(I) kaytettiin(I) keramiikan(I) la-
sit(I) ukseen(I) sekd(I) jalokivien(I)
jaljit(I) elmiin(T) .(I) [(I) O(D) (I)

Box 13: Beam search answer estimation for Finnish

7 Prompt: EBR ¥y 7 —#% 13 VWD 3
SMUZ20000F0H0H, 79 VA
HHE YT, TIVA, ATUXR,
AL A, FTUIX—2T, N)LF¥F—, R
Jr—Fv. ARA VDO rE(EL
LOEBIZ., AU —F U ARTY
Regd it 22enCcEd,. FUv
— 7 7T VANRRKRE ULz) D EED
. RO Yy i — KREE R LD &
w2 LZ10, HHEO0OHOWHEZE
TOOHMBTHMAHZE [EHEYY A
— L (BEFR: fifa)l & Oz, T
7 00 % D fifa #8542 ( fifa congress ) 1% .
7TV AD AR—" Kith HK 1€ ti ques
YD 7y hiR— ) BEEBHE (T TV
AREEREXE)D OR=)L - 7
TV (7T VAN) BN fifa R F I
BHLEZ, ZOE X 730 ®T
Hotz, FHIE. DITHLOE Ko7z
M. oz, JEE AL O WHa (M
W e R AT Ok O T &k ), K
AV, A—AMIUT, 4AXIT, N
VHY)—D HhbETOOD EHE Mk
D tHEH fifa FIL BED 0000 F£12
BIU2 (0], WM BASR I 28 0 4R fifa
SR XRX=ZT)V - U=V TFx—N (A
XVAN, 1V Ry h—He
SE BB IR, ET77VA N
0000 A M L7zDW RAITH 5,

Pred: #%13L U 72(B) 2(I) 0000(I) ZET) 0(I)
H@Doo@M HO. @) 7 7 v A1) EHBD)
NRYTMD. O 77 VAD. D) ATV
M. ) A1 AD . I) T ¥~—2(0)
DRV FEF-D., AV z—T (),

D) A1 D) 0d) 7 FE@) (D ELT).

D EBIZOD. O ATz —F &0 A
RA D) EFED ITHOD B2 ENTE
IO, OTFr—2DOD&0) 7T VA
MO MRED LZO)HD 2BEE LD . D)
HHRDO@) Yy F— 1) FHAEQ) M) %7
D) =2iE0D) Z B L 720 [(D 01D . D)
|4 o) A (@) 00(1) H TD() 0(1) H
fco Mo 220 T@O EEY Y H—
D) (D) BEFRD) (D fifal) )] (D) & (@) R
ST, (1) DT A 00(I) & D(I) fifal)
Fa2= (D) (1) fifa(I) congress(I) )(I) 1Xd) . (I)
75 v ADI) AR—Y 1) O HERD)
us(I) f(I) sa(I) (I) union(I) des(I) soci(I) ét(I)
és(I) franca(I) ises(I) de(I) sports(I) ath(I) 1é(I)
ti(I) ques() )I) D) 7 v b KR—)L(1) &
20 HHD (D) 7 7 ¥ AD KREHEED
FLEO)D OO Bx—)LA) - D77
() (@) 7 Z > AAND D) ZARQ) fifad)
SEOIZENLEZD. I) 20 & XD
(M) Z @) 00(0) ETH - 720D, (1)
AHHIE MY (T DA O (T &




J Lab5: BiLSTM training
hyperparameters

Table 9: Training hyperparameters

LSTM Dim

Dropout Probability

Batch Size

Learning Rate

Epochs

K Lab 6. Training Results per Epoch, per

300
0.25
256
0.001
75
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Epoch

training English

Binary Classification F1 scores: |

0.5

0.4

0.3

F1 and Loss

0.2 4

0.1

0.0

.51

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38

Epoch

Binary Classification F1 scores: |

F1 and Loss

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38
Epoch

F1_english

Max F1_japanese_xIm-roberta-base
F1_finnish

Max F1_japanese_xIm-roberta-base
F1_japanese

Max F1_japanese_xIm-roberta-base
Loss_japanese

Min Loss_japanese_xIm-roberta-bast

Figure 16: XLM-RoBERTa: F1 Binary classification

F1_english

Max F1_english_xIr
F1_finnish

Max F1_english_xIr
F1_japanese

Max F1_english_xIr
Loss_english

Min Loss_english_x

training Japanese

Binary Classification F1 scores: |

F1 and Loss

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38
Epoch

F1_english

Max F1_english_bert-base-multilingt
F1_finnish

Max F1_english_bert-base-multilingt
F1_japanese

Max F1_english_bert-base-multilingt
Loss_english

Min Loss_english_bert-base-multiling

Figure 17: M-BERT: F1 Binary classification training

F1_english

Max F1_finnish_xIn
F1_finnish

Max F1_finnish_xIn
F1_japanese

Max F1_finnish_xIn
Loss_finnish

Min Loss_finnish_xI
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Figure 25: XLM-RoBERTa: Sequence Labeling Train-
ing Japanese

L Labé6: Training hyperparameters

Table 10: Training hyperparameters

Dropout Probability  0.25

Batch Size 32
Learning Rate 0.00005
Epochs 40

M Lab5: Overview of parsed-question
context pairs

Table 11: Overview of parsed question-context pairs
from training (Tr) and validation (VI) splits post-
tokenization

Ans  Unans Total Fails >512
Eng Tr | 2892 3693 6550 804 35
Eng VI | 414 495 905 81 4
Fin Tr | 5652 6846 12474 || 1203 24
Fin VI | 663 843 1502 180 4
JapTr | 669 4389 4967 3720 91
Jap V1 | 65 518 577 453 6

N Lab6: Overview of parsed
question-context pairs per model

@ Max F1_japanese_xIm-roberta-base

Max F1_japanese_xlm-roberta-base
—— F1l_japanese
@ Max F1_japanese_xIm-roberta-base
—— Loss_japanese
® Min Loss_japanese_xIm-roberta-bas¢

Table 12: Overview of parsed question-context pairs
from training (Tr) and validation (V1) splits with M-

BERT and XML-RoBERTa tokenizers

Ans  Unans Total ‘ ‘ Fails >512
M-BERT
Eng Tr 3551 3670 7221 108 60
Eng V1 454 491 945 39 6
Fin Tr 6365 6799 13164 || 430 107
Fin V1 783 836 1619 52 15
Jap Tr 2953 4250 7203 1200 375
Jap VI 353 507 860 135 41
XML-R
Eng Tr 3299 3663 6962 356 71
Eng V1 454 491 945 39 6
Fin Tr 6256 6813 13069 || 554 78
Fin V1 755 841 1596 80 10
Jap Tr 671 4284 4955 3539 284
Jap V1 79 511 590 419 27




