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Introduction

The following report describes the six exercises
solved throughout the course on Natural Language
Processing with the goal of creating a multilingual
question answering system using English, Finnish,
and Japanese. Whereas English and Finnish use
the Latin alphabet, Japanese uses four different
alphabets. All of them are included in the data.
Furthermore, Japanese does not separate words by
white spaces and pronouns may be omitted con-
trary to English and Finnish. Finnish on the other
hand is a morphopohonologically diverse language
resulting in various alternations of verbs and nouns
(Clark et al., 2020). For this task, the Answerable
TyDiQA training and validation data for the respec-
tive languages was used (Clark et al., 2020) 1. The
dataset is based on the GoldPassage task in the orig-
inal dataset extended with unanswerable instances.
Importantly, each question has an answerable in-
stance and an unanswerable instance making the
classes for binary question classification balanced.
All authors contributed equally.

1 Lab 1: Introduction to NLP

To start with Lab 1, two additional columns were
added to the Answerable TyDiQA dataset: the con-
catenated question and Wikipedia passage associ-
ated with the question (context) and a binary col-
umn indicating whether an answer is available in
the passage (1 otherwise 0).

1.1 Preprocessing

Preprocessing steps include removing Wikipedia
footnotes, punctuation, and superfluous white
spaces. Additionally, a special form of quotation
marks in the Japanese data was removed. All of
these steps may be chosen to skip and tokenize the
data right away. Another common pre-processing
step is the removal of commonly used words, i.e.

1https://huggingface.co/datasets/copenlu/answerable_tydiqa

stopwords (Denny and Spirling, 2018). In our case,
however, stopwords were kept in the data under
the assumption that they add to the meaning of the
question. Furthermore, the text was not converted
into lowercase in order to keep entities such as
names distinguishable (Denny and Spirling, 2018).

1.2 Tokenization

To tokenize the English and Finnish data, the li-
brary NLTK (Bird et al., 2009) as well as Spacy
(Honnibal et al., 2020) (en_core_web_sm and
fi_core_news_sm) were used. For the Japanese
language, a comparison was done with Spacy
(ja_core_news_sm) and Fugashi (McCann, 2020)
together with the full UniDic tokenization dictio-
nary. Tab. 1 provides an overview of the most
common first and last tokens in the questions of
the respective languages. Clear similarities are ob-
servable between English and Finnish, whereas
Japanese questions show a different pattern. Firstly,
the question word is usually indicated by the last
token. Secondly, the first token of a question is
most commonly a noun or name instead of a verb
as in English and Finnish.

1.3 Vectorization

Once the data is tokenized, it is passed into either
the CountVectorizer or the TfidfVectorizer of the
package Sklearn (Pedregosa et al., 2011). Whereas
the CountVectorizer turns documents into sparse
vectors containing the count values of terms, the
TfidfVectorizer considers the term frequency over
all documents as well as the number of documents
including that term to compute weights instead of
the simple count. This is based on the assump-
tion that a term is important for the meaning of a
document if it occurs often in that document. The
relevance of the word diminishes, however, if it
occurs in many documents of the whole corpus
(Christopher et al., 2008). This weighting scheme,



English Finnish Japanese
First token Last token First token Last token First token Last token
When born Milloin_When syntyi_born in 日本_Japan ?_?
What founded Mikä_What on_on 『_『 いつ_when
How die Missä_Where kuoli_died アメリカ_America た_rice field
Who have Kuka_Cry tarkoittaa_mean 世界_world どこ_Where
Where formed Mitä_What perustettu_founded 第_First 何_what
Whats established Kuinka_How syntynyt_born 「_「 誰_Who
Which air Minä_I oli_was ドイツ_Germany だれ_Who
Why released Mistä_Where from perustettiin_was established ジョージ_George は_teeth
In live Miten_How sijaitsee_located ウィリアム_William から_from
On introduced Mihin_Where pintaala_surface ジョン_John ある_be

Table 1: Ten most common first and last tokens for English (NLTK), Finnish (NLTK), and Japanese (fugashi).

Language Input Tokenizer tf-idf F1 score Acc
English QstCtxt NLTK True 0.759 0.747
Finnish Ctxt NLTK False 0.739 0.747

Japanese
preprocessed
QstCtxt

Fugashi True 0.717 0.715

Table 2: Best performing binary question classifier per
language.

however, might underestimate the importance of
question words, since their term frequency is rather
low, whereas the document frequency is high. By
concatenating question and context before the tf-idf
weighting, their weights are likely to be even more
skewed.

1.4 Classifier

Classification was performed with logistic regres-
sion which predicts the classes based on the es-
timated probability dependent on the features
(Naseem et al., 2021). Once the data is vector-
ized, it is passed onto the classifier. Herein, we use
the respective function of Sklearn with L2 regular-
isation so that higher coefficients are more costly.
Additionally, the count of overlapping tokens in
question and context can be added as a feature to
account for similarity in the input. However, the
sparse document representations were used without
overlap and investigaton on the effect of overlap is
done in Section 4.

1.5 Results

For each language, different models were ran using
only the question, only the context, and the con-
catenated question and context as input. Tab. 2
provides an overview of the best performing model
per language.

In sum, the tokenizers by NLTK and Fugashi out-
perform Spacy. Furthermore, Fugashi is the only
tokenizer that needs preprocessing steps in order
to enhance performance of the model. Generally,

using the concatenated question and context as well
as tf-idf weighting results in a better performance
except for minor differences in Finnish. However,
using the concatenated question and context as in-
put results in only a slightly lower performance.
For all three languages, passing only the question
as input results in the worst performance with an
accuracy of 0.5, since every question has one an-
swerable and one unanswerable instance.

2 Lab 2: Representation Learning

In this section, the binary classifier using sparse
vectors to represent features is extended to use con-
tinuous word representations. These are created
using fastText embeddings for all three languages.
The models in this section are built on the binary
question classifiers from Lab 1 using the concate-
nated question and context as input, weighted by
tf-idf scores and preprocessed only in the case of
Japanese. Following previous results, only the
Japanese data is preprocessed.

2.1 FastText word embeddings

FastText offers 300 dimensional word vectors for
294 languages trained on Wikipedia data using a
skip-gram model (Bojanowski et al., 2017). Words
are handled as bags of character n-grams. In this
way, fastText embeddings are especially useful for
morphologically rich languages, such as Finnish
(Bojanowski et al., 2017). These vectors were cho-
sen since the training data aligns with the Answer-
able TyDiQA data. A newer version of pretrained
word vectors uses Wikipedia and Common Crawl
data, which has advantages for low-resource lan-
guages with only limited Wikipedia data (Grave
et al., 2018).



2.2 Vectorization
Based on Lab 1, the NLTK tokenizer was used for
English and Finnish without preprocessing. The
preprocessed Japanese data was tokenized using
Fugashi. In a next step, the respective fastText
word vectors are assigned to the tokens. Out-Of-
Vocabulary (OOV) tokens are represented by the
mean of all available fastText embedding vectors
for each language to account for the distribution of
possible values in the 300 dimensions. The embed-
ding is pooled by calculating the weighted average
based on tf-idf scores resulting in one vector per
document of the length of 300. Hereby, differing
importance of words within the document is ac-
counted for. This approach is compared to using
the count values of words in a document when
averaging, i.e. only using the continuous word
representations.

2.3 Results
The results of the different models are displayed in
Tab. 3. For all three languages, the binary question
classifiers based on only the tf-idf scores perform
best followed by the models using only the contin-
uous word representations. In the case of Finnish,
there is only a 0.01 decline in accuracy in the fast-
Text model compared to the tf-idf model. The com-
bination of the word representation, i.e. pooling the
embeddings using the tf-idf weighted average, per-
forms worst. In the Japanese model, performance
between the continuous and the combined model
does not differ substantially.

English F1 score Accuracy
Tf-Idf 0.759 0.747
fastText 0.691 0.674
fastText & Tf-Idf 0.683 0.657
Finnish F1 score Accuracy
Tf-Idf 0.733 0.723
fastText 0.733 0.722
fastText & Tf-Idf 0.718 0.688
Japanese F1 score Accuracy
Tf-Idf 0.72 0.717
fastText 0.683 0.659
fastText & Tf-Idf 0.683 0.659

Table 3: F1 score and accuracy per language and model.
English & Finnish: NLTK, Japanese: preprocessed &
fugashi.

The results suggest that using only sparse word
representations based on tf-idf scores is the most
efficient and best performing option so far. In-
terestingly, arguing on a theoretical basis, the bi-
nary question classifier should perform better using

the continuous word representations accounting for
the contextual similarity of words. Sparse vector
representations, however, do not account for this
(Naseem et al., 2021). Firstly, a possible reason
for the lower performance of the models using con-
tinuous word representations might be the amount
of OOV tokens. All OOV tokens are represented
by the same vector, however, the original tokens
might be distant from each other in the linguistic
space. Secondly, the concatenation of question and
context before the vectorization might result in an
inadequate document representation. An alterna-
tive approach to test in future applications is the
embedding of question and context independently
from each other and then concatenating the vectors
instead of embedding them as one.

3 Lab 3: Language modelling

The third lab’s key objective is training binary ques-
tion classifiers based on sentence representation
from fine-tuned models. To achieve this goal, input
is defined to the model by concatenating a question
with a context. Herein, the model has all the in-
formation to find the relation between the question
and the context tokens and outputs a representation
with an answerability property. Given the subtask
of sentence generation, we chose the autoregressive
model GPT-2. Hereby, only the question is passed
as input in order to generate a context.

3.1 Fine-tuning

To steer the generation part we need to introduce a
couple of new tokens <question> and <context>(
see Fig. 1), this entails fine-tuning of three different
pretrained GPT-2 models on English, Finnish, and
Japanese (see Tab. 4).

Language Model name
English distilgpt2
Finnish Finnish-NLP/gpt2-finnish
Japanese rinna/japanese-gpt2-medium

Table 4: Pretrained GPT-2 models.

Figure 1: Input separation with <question> and <con-
text> tokens

Another problem is that the context data within
the MinSpan dataset is much longer. Whereas in
the Answerable TyDiQA dataset, it is rarely the case



that the context data exceeds the GPT-2 limitation
of 1024 tokens. Thus, this problem is only relevant
for fine-tuning since the binary question classifier
will be trained done on Answerable TyDiQA dataset.
So the solution can be described by the following
steps:

• Concatenate a question with a context

• Tokenize the concatenated string into token
IDs

• Annotate all tokens, whether they are part of
question, context, or padding(see Fig. 2)

Figure 2: Tokens annotation

• Formulate ground truth. We are only inter-
ested in the improvements for predicting con-
text correctly. Thus we mark <question> and
<pad> tokens with -100 to avoid computing
loss(cross entropy) for them.

• Split token_ids, token_type_ids and ground
truth into chunks of size 1024 tokens or less.

3.2 Sampled sentences analysis
The major technique for text generation we used
was nucleus sampling, primarily for two reasons.
The first justification comes from this work, (Holtz-
man et al., 2019), in which it is claimed that human
language does not adhere to the high likelihood of
subsequent words. The second argument is based
on practical testing, which revealed that greedy and
beam searches frequently produced text that was
illogical or trapped in endless repeats.

3.2.1 English sampled sentences
The model was sampled for semantically different
sentences that contain fictional and real subjects,
as well as questions of sensitive nature. The model
was challenged on interpreting question words as
well as probed for bias, dealing with poor grammar
and word ambiguity. Tab. 5 depicts samples gener-
ated from the model and the following patterns are
observed:

• In all cases, the model was able to expand on
the main subject of the question

• Elaboration on identified key entities from the
question, Q1-Q5

• Improved performance with correct grammar,
Q1 vs Q2

• Fictional Latin names when encountering ani-
mals, Q1-Q3

• Poor language disambiguation, Q4

• Indirect response and bias towards religion,
Q6-Q7

• Generally answers not based on facts, Q3, Q5-
Q7

Question Answer
1. Where a polar bear lives? A polar bear (Carassius auratus) is a species of

polar bear that resides in the Canadian prairies.
2. Where does a polar bear
live?

The Antarctic bears are polar bears that have lived
on the North Pole about 3,500 years ago.

3. A tomato bear? The tomato bear (Davarianus annus) is a large
brown bear that resides in the southern part of
the Indo-Pacific region of Asia.

4. How old is Marry? Marry refers to any aspect of marriage between a
man and a woman.

5. How old is Elon Musk? Musk was born on August 22, 1957, in the New
York City suburb of Long Island City.

6. What is the best religion? Islam is a religion in the rest of the world. Islam is
the largest religion in the world, though no single
religion is recognised internationally.

7. Is there a best religion? Christianity is a widely held religious view within
the United States, with over 70% of Americans
identifying themselves as Christian.

Table 5: Samples from english fine-tuning

3.3 Evaluation
The metric of perplexity is used to intrinsically
assess the three refined language models (see Tab.
6).

Language Perplexity
English 86.942
Finnish 53.842
Japanese 59.706

Table 6: Evaluation of language model

Perplexity is a measure to account for the con-
fusion of a language model when trying to predict
subsequent tokens. The English model seems to
produce a wider range of possible next tokens com-
pared to the Finnish and Japanese model. However,
due to the different characteristics of the languages
and pretrained GPT-2 models, direct comparison
between the results are hardly possible.

3.4 Classifier
Logistic Regression was used for classification. As
the input we were using last hidden state, which has



following dimension 1xNx768, where N is number
of layers. To make input compatible with Logistic
Regression we summed the tensor along N layers
to reduce it to 1x768. Tab. 7 displays the F1 score
and accuracy of the corresponding binary question
classifier for each language. For the English and
Finnish model, the performance has improved com-
pared to sparse vector representations, whereas in
the case of Japanese the tf-idf model still results in
the best performance.

Language F1 score Accuracy
English 0.75 0.76
Finnish 0.74 0.77
Japanese 0.66 0.71

Table 7: F1 score and accuracy per language.

4 Lab 4: Error Analysis and
Interpretability

In week 4, a comparison was done between the bi-
nary classifier from Lab 1 based on tf-idf weighting
and the combined classifier from Lab 2 based on
fastText word embeddings pooled by the average
using tf-idf scores.

4.1 Comparison of the Models

In our case the simple model based on tf-idf vectors
in Lab 1 performed considerably better than the
continuous word representations in Lab 2 in all
three languages (see Tab. 3). In the following, the
confusion matrices will be investigated as well as
the effect of the input length, the overlap of tokens
between question and context, and the question
word on the classification.

4.1.1 English

Both classifiers are biased towards answerable
questions with a stronger bias in the combined
model of Lab 2. Consequently, the perfor-
mance is slightly lower for unanswerable questions.
Whereas the classifier from Lab 1 classifies shorter
inputs as unanswerable, both incorrectly and cor-
rectly, the classifier from Lab 2 classifies shorter
inputs as answerable in the incorrectly classified
questions. Furthermore, the model from Lab 1
struggles with the classification of unanswerable
’What’-questions (see Appendix A). In both cases
the overlap of tokens does not indicate a clear pat-
tern regarding the classification.

4.1.2 Finnish
Again, both classifiers are more likely to classify
an instance as answerable resulting in a slightly
better performance on that class. Whereas the
incorrect classification in the model from Lab 1
are not affected by the input length, the model
from Lab 2 classifies shorter inputs as answer-
able and longer inputs as unanswerable. Based
on question words, the classifier from Lab 1
performs well on ’When’-questions. In unan-
swerable instances, the performance is worse for
’What’-questions, for answerable questions for
’Mihin_Where’- and ’Miten_How’-questions. The
combined model shows a similar pattern along-
side a higher mis-classification of answerable
’Kuka_Cry’- and ’Miksi_Why’-questions and unan-
swerable ’Mikä_What’-question (see Appendix B).
The overlap of tokens does not indicate a clear
pattern.

4.1.3 Japanese
Contrary to the English and Finnish models as well
as the combined Japanese model from Lab 2, the
model from Lab 1 is not particularly biased to-
wards answerable questions. Whereas the model
from Lab 2 is not affected by the input length,
the model from Lab 1 is prone to classify shorter
inputs as unanswerable. As in the case of En-
glish and Finnish, the model from Lab 1 struggles
with correctly classifying unanswerable ’何_what’-
questions (see Appendix C). However, both models
are not substantially affected by the overlap of to-
kens in the question and context.

4.2 Detailed Error Analysis of Lab 1
Due to the more elaborate knowledge on the En-
glish language, the detailed error analysis focuses
on the English model from Lab 1 using the sparse
tf-idf vectors. Additionally to the above described
analysis, we have examined the count of conjunc-
tion words (for, and, nor, but, or, yet, so), nega-
tions (not, no), and numeric tokens in the input.
Furthermore, Fig. 3 provides an overview of the
10 most positive and most negative weighted to-
kens in the logistic regression. Instances classified
as answerable have a higher count of conjunction
words than instances classified as unanswerable.
Regarding negations, the opposite pattern can be
observed. Inputs with a higher count of negations
are classified as unanswerable. The biggest differ-
ence can be seen in the count of numbers, where in-
puts classified as answerable contained on average



around five numeric tokens and inputs classified
as unanswerable on average only approximately
three. Likewise, Fig. 3 shows the comparatively
high positive weights for numbers from 1 to 3 in
the logistic regression. This leads us to the assump-
tion that the model reacts sensitively to the count
of numeric tokens. Furthermore, the model seems
to put high negative weights on the question mark
as well as common question words, such as ’What’
and ’When’. 2

Figure 3: Top 10 positive and negative features in the
logistic regression using tf-idf weights.

4.3 Adversarial Instances

Based on the error analysis above, we tested our
model by adding and deleting negation words, con-
junction words, numbers, and truncating the input.
The following four examples fooled the model into
an incorrect prediction that was previously correct.
The removal of all numeric tokens for the answer-
able instance of ’What organization did the terror-
ists on 9/11 belong to?’ resulted in a classifica-
tion as unanswerable. For the answerable example
’Which sports are included in athletics?’, adding a
’not’ token to the end of the context led the model
to mis-classify the instance as unanswerable. In
the case of the answerable instance of ’How do
you separate plasma from blood?’, we deleted the
conjunction word ’or’ in the context to trigger a
classification as unanswerable. Lastly, truncating
the input of the answerable instance ’When was
CSS developed?’ down to 100 tokens, so deleting
the last 11, resulted in a classification as unanswer-
able even though the answer was still included. See
Appendix E for examples.

2A manual inspection of ’What’-questions revealed two
incorrectly annotated data points (see Appendix D).

5 Lab 5: Sequence Labelling

The aim of Lab 5 is to develop a span-based mono-
lingual question-answering system for English,
Finnish, and Japanese that predicts which tokens
of a given context paragraph are the likely answer
to a proposed question. Prediction is done using
IOB tagging pattern (Ramshaw and Marcus, 1999).

5.1 Data Preprocessing

For extracting tokens and embeddings, a pre-
trained embeddings model BPEmb (Heinzerling
and Strube, 2018) is used due to its large maxi-
mum vocabulary size (200k), multilingual support
and byte-pair encoding technique that helps solve
the unknown word problem through subword seg-
mentation as well as its memory efficiency, when
compared to FastText (Heinzerling and Strube,
2018). The embeddings were extracted as 300-
dimensional vectors with 200k vocabulary size. Af-
ter tokenization the question and context is concate-
nated to form a prompt for the model, after which
the IOB label vector is mapped.

Some valid datapoints were dropped due to the
mapping algorithm not being able to map the an-
swer to the context, and due to cases of inconsistent
punctuation symbols in the dataset answers, see Ap-
pendices F and G. Appendix M depicts an overview
of the parsed datapoint statistics.

Class weights for the I, O, B labels are calcu-
lated based on normalized inverse-frequency since
re-sampling is not a possibility. Other techniques,
such as inverse-square frequency or effective num-
ber of samples (Cui et al., 2019) could also be
tested for class balancing.

5.2 Sequence Labeling Model

To perform the sequence labeling, a bi-directional
Long-Short Term Memory (BiLSTM) Recurrent
Neural Network (RNN) architecture was used for
training a model. Hereby, the risk of vanish-
ing/exploding gradient is decreased and informa-
tion retrieval from both preceding and following to-
kens when predicting an IOB label is possible (Pas-
canu et al., 2013) A second BiLSTM model was
used in an encoder-decoder architecture with an
implementation of a beam-search algorithm upon
decoding the output. Both models use a Cross
Entropy loss function with added class weights to
balance IOB labels. See Appendix J for summary
of the hyperparameters of the final training, that
yielded the best results.



5.3 Evaluation and Results

The following Fig. 4 and 5 depict loss and overall
F1 score for all three languages of the basic and
beam-search BiLSTM models. The figures show
improvement with each training epoch although
the performance varies across languages.

Fig. 5 depicts training of the LSTM model with
beam-search which does not follow a similar im-
provement pattern as the basic model. The beam-
search, the maximum F1 values are ignored for
the first 5 epochs due to the models being biased
towards O label and the best values are considered
the ones of the last epoch. For a closer analysis, F1
scores from evaluation are summarized in Tab. 8.

Figure 4: Basic BiLSTM training and validation
overview

Figure 5: Beam search (size=1) training and validation
overview

Table 8: Per-label overview of F1 scores. Epoch=75

F1 Basic F1 Beam=1 F1 Beam=2
O_Eng 0.99 0.58 0.06
B_Eng 0.22 0.04 0.00
I_Eng 0.21 0.05 0.04
O_Fin 0.98 0.49 0.42
B_Fin 0.35 0.02 0.02
I_Fin 0.21 0.07 0.07
O_Jap 1.00 0.72 0.11
B_Jap 0.55 0.03 0.01
I_Jap 0.57 0.01 0.01

5.4 Discussion and Conclusions

It is expected that the model with beam-search
would yield similar or better results because of
deriving a better global average if the beam size
is greater than 1. The upward trending F1 scores
and downward trending loss function in Fig. 5
indicate that the model has not converged yet
and training should be continued. Otherwise the
low scores, when comparing BeamSearch(n=1) to
BeamSearch(n=2), may be an indication of a bug
in the code that should be reviewed. Qualitative
evaluation showed that the basic model was able
to roughly answer the questions although in some
cases non-continuous spans were predicted, as well
as multiple B labels per span. This pattern was
observable in all languages, more prominently for
the beam-search model, see Appendices H and I.
Sometimes the models also predicted the question
as part of the answer, this was more prominent
for the beam-search model. The results could still
be further improved by enhancing the architecture
with a CRF extension (Huang et al., 2015) to better
encode neighbour tag information. The current ar-
chitecture with beam-search would not be usable
in production due to the inconsistent B and I se-
quences, hence the training should be repeated.

6 Lab 6: Multilingual QA

The task of Lab 6 is to develop a two-part multi-
lingual model system, with one model performing
answer estimation through sequence labeling and
another model performing binary classification of
answerability. Modeling multilingual QA is non-
trivial due to the topological diversity of languages,
meaning the degree to which a meaning is conveyed
using different linguistic expressions (Clark et al.,
2020), as well as structural differences (K et al.,
2019). Nevertheless, multilingual models such as
M-BERT and XLM-RoBERTa (XLM-R) show an
impressive cross-lingual performance on sequence



labeling tasks (Lample and Conneau, 2019) and
hence will be used for this lab.

It is expected that English and Finnish would
cross-map better during the evaluation than either
of the languages with Japanese due to the charac-
teristics of the languages (Clark et al., 2020). Simi-
larly, Japanese should map better to Finnish than
to English, due to those languages sharing more
similarities (Clark et al., 2020).

6.1 Data Preprocessing

The preprocessing pipeline has been reused from
Lab 5, with the exception that tokenization was
done with each of the models’ respective tokeniz-
ers. Question-context pairs over 512 tokens were
filtered out due to M-BERT limitations (Ollinger
et al., 2020). Dropping datapoints was done due to
the low number of long sequences present within
the dataset, although other hierarchical or trunca-
tion methods (Sun et al., 2019) could also be used
and tested. The tokenized context-answer mapping
algorithm ended up in failing to map one-to-one
certain entries, which were logged as fails, see Ap-
pendix F for the algorithm. When creating the label
vector for binary classification, the class weights
for ANS and UNANS were not balanced. See Ap-
pendix N for post-tokenized datapoint summary.

6.2 Sequence Labeler and Binary Classifier

To draw a side-by-side comparison between the
M-BERT(Cased) and XLM-R models, both were
trained and evaluated seperately on the sequence
labeling task. The binary classifier was then trained
on the last layer’s hidden states of each model
and corresponding ground-truth label vector. Both
models were trained on the same hyperparameters
shown in Appendix L. Optimizer and scheduler
were also reused from Lab 5, as well as the binary
classification logistic regression model from Lab 3.

6.3 Results

Fig. 6 shows accuracy values for the binary classifi-
cation with a high outlier for the Japanese XLM-R
model. Fig. 7 shows that for sequence labeling,
M-BERT generally has a better cross-lingual trans-
fer in terms of smaller variance over the F1 scores,
as well as higher F1 scores per language with the
exception of training on Finnish and evaluating
on English where XLM-R performs better with a
0.13 increase. See Appendix K for plots of each
language training and evaluation over time.

Figure 6: Bin.Class: Left XLM-R, Right M-BERT

Figure 7: Seq.Lab: Left XLM-R, Right M-BERT

6.4 Discussion and Conclusions
The results from the confusion matrix may also be
misleading as they depict F1 score output from the
last training epoch, as opposed to the best epoch.
The sequence labeling results of XLM-R generally
trends towards Finnish and English being closer
to each other than Japanese which has a more
varied performance, see Appendix K. This could
be explained by more lingual commonalities be-
tween English and Finnish than either of them with
Japanese (Clark et al., 2020).

Although the results could be skewed by flaws
in the training loop, namely many datapoints were
dropped when failing to map answer to context, see
Appendix N and F, and unbalanced binary classi-
fication labels. Fixing these issues could lead to
higher F1 scores.

XLM-R is trained on Common Crawl data (Con-
neau et al., 2020) and a larger dataset than M-BERT,
whereas M-Bert is trained on Wikipedia data and
thus could be more accustomed to the Answerable
TyDiQA dataset. This may explain the lower perfor-
mance of XLM-R, as expected per (Hu et al., 2020).
XLM-R has a significantly worse performance in
Japanese training than for M-BERT, this could be
affected by the smaller amount of datapoints that
XLM-R was trained on, see Appendix N for the
datapoint overview.

Binary classification results present accuracy, al-
though it may be misleading because the model is
biased towards unanswerable questions due to the
imbalanced datapoints as well as imbalanced class
weights. Hence balancing class labels should be
done and model should be re-evaluated.
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Figure 8: Classifications by starting token, i.e. question
word - English sparse model.

Correct and incorrect classifications by question
words in the English combined tf-idf and fastText
model:

Figure 9: Classifications by starting token, i.e. question
word - English combined model.

B Lab 4. Investigation on Question
Words in Correct and Incorrect
Classifications - Finnish

Correct and incorrect classifications by question
words in the Finnish tf-idf model:

Figure 10: Classifications by starting token, i.e. ques-
tion word - Finnish sparse model.

Correct and incorrect classifications by question
words in the Finnish combined tf-idf and fastText
model:

Figure 11: Classifications by starting token, i.e. ques-
tion word - Finnish combined model.

C Lab 4. Investigation on Question
Words in Correct and Incorrect
Classifications - Japanese

Correct and incorrect classifications by question
words in the Japanese tf-idf model. Starting token
of a question corresponds to the last token in the
input question:

Figure 12: Classifications by starting token, i.e. ques-
tion word - Japanese sparse model.

Correct and incorrect classifications by question
words in the Japanese combined tf-idf and fastText
model. Starting token of a question corresponds to
the last token in the input question:

Figure 13: Classifications by starting token, i.e. ques-
tion word - Japanese combined model.



D Lab 4. Incorrectly Annotated
Datapoints



question_text: ’What is the surface
area of the human cortex?’ docu-
ment_plaintext: ’For species of mam-
mals, larger brains (in absolute terms,
not just in relation to body size) tend
to have thicker cortices.[6] The small-
est mammals, such as shrews, have a
neocortical thickness of about 0.5mm;
the ones with the largest brains, such
as humans and fin whales, have thick-
nesses of 2.3–2.8mm. There is an
approximately logarithmic relation-
ship between brain weight and corti-
cal thickness.[6] Magnetic resonance
imaging of the brain (MRI) makes
it possible to get a measure for the
thickness of the human cerebral cortex
and relate it to other measures. The
thickness of different cortical areas
varies but in general, sensory cortex
is thinner than motor cortex.[7] One
study has found some positive asso-
ciation between the cortical thickness
and intelligence.[8] Another study has
found that the somatosensory cortex is
thicker in migraine sufferers, though
it is not known if this is the result
of migraine attacks or the cause of
them.[9][10] A later study using a
larger patient population reports no
change in the cortical thickness in mi-
graine sufferers.[11] A genetic disor-
der of the cerebral cortex, whereby
decreased folding in certain areas re-
sults in a microgyrus, where there
are four layers instead of six, is in
some instances seen to be related to
dyslexia.[12] The cerebral cortex de-
velops from the most anterior part,
the forebrain region, of the neural
tube.[29][30] The neural plate folds
and closes to form the neural tube.
From the cavity inside the neural tube
develops the ventricular system, and,
from the neuroepithelial cells of its
walls, the neurons and glia of the ner-
vous system. The most anterior (front,
or cranial) part of the neural plate, the
prosencephalon, which is evident be-
fore neurulation begins, gives rise to
the cerebral hemispheres and later cor-
tex.[31]’ annotation: ’answer_start’:
[295], ’answer_text’: [’2.3–2.8mm’]
Correct annotation: ’answer_start’: [-
1], ’answer_text’: [”]

Box 1: Instance of incorrect annotation regarding an-
swerability



question_text: ’What is the most
common type of edible mushroom?’
document_plaintext: ’Agaricus
bisporus dominates the edible mush-
room market in North America and
Europe, in several forms. It is an
edible basidiomycete mushroom
native to grasslands in Europe and
North America. As it ages, this
mushroom turns from small, white
and smooth to large and light brown.
In its youngest form, it is known as
the ’common mushroom’, ’button
mushroom’, ’cultivated mushroom’,
and ’champignon mushroom’. Its
fully mature form is known as ’porto-
bello’. Its semi-mature form is known
variously as ’cremini’, ’baby-bella’,
’Swiss brown’ mushroom, ’Roman
brown’ mushroom, ’Italian brown’
mushroom, or ’chestnut’ mush-
room.[8][9][10][11]’ annotation:
’answer_start’: [119], ’answer_text’:
[’basidiomycete mushroom’] Correct
annotation: ’answer_start’: [0],
’answer_text’: [’Agaricus bisporus’]

Box 2: Instance of incorrect annotation regarding short-
est possible answer

E Lab 4. Examples of Adverserial
Instances

Four examples are provided of modified input that
fooled the model to classify the question with an
opposite label.

Original: ’What organization did
the terrorists on 9/11 belong to?
Two weeks after the September
11 attacks, the Federal Bureau of
Investigation connected the hijackers
to al-Qaeda,[1] a global, decentralized
terrorist network. In a number of
video, audio, interview and printed
statements, senior members of
al-Qaeda have also asserted respon-
sibility for organizing the September
11 attacks.[2][3][4] It is believed that
Osama bin Laden, Khalid Sheikh
Mohammed, and Mohammed Atef
were the ones who plotted the attacks
after meeting together in 1999.[5]
It is also believed Khalid Sheikh
Mohammed was the one who planned
the attacks[5] and that Atef was the
one who organized the hijackers.[5]’

Modified: ’What organization did the
terrorists on 9/11 belong to? Two
weeks after the September attacks, the
Federal Bureau of Investigation con-
nected the hijackers to al-Qaeda,[] a
global, decentralized terrorist network.
In a number of video, audio, interview
and printed statements, senior mem-
bers of al-Qaeda have also asserted re-
sponsibility for organizing the Septem-
ber attacks.[][][] It is believed that
Osama bin Laden, Khalid Sheikh Mo-
hammed, and Mohammed Atef were
the ones who plotted the attacks after
meeting together in .[] It is also be-
lieved Khalid Sheikh Mohammed was
the one who planned the attacks[] and
that Atef was the one who organized
the hijackers.[]’

Box 3: Changed into False Negative by removing num-
bers



Original: ’Which sports are included
in athletics? Athletics is a collection
of sporting events that involve com-
petitive running, jumping, throwing,
and walking.[1] The most common
types of athletics competitions are
track and field, road running, cross
country running, and walking race.’

Modified: ’Which sports are included
in athletics? Athletics is a collection
of sporting events that involve compet-
itive running, jumping, throwing, and
walking.[1] The most common types
of athletics competitions are track and
field, road running, cross country run-
ning, and walking race. not’

Box 4: Changed into False Negative by adding negation

Original: ’How do you separate
plasma from blood? Blood fraction-
ation is the process of fractionating
whole blood, or separating it into
its component parts. This is typ-
ically done by centrifuging the blood. ’

Modified: ’How do you separate
plasma from blood? Blood fraction-
ation is the process of fractionating
whole blood, separating it into its com-
ponent parts. This is typically done by
centrifuging the blood. ’ Changed
into False Negative by removing con-
junction word

Box 5: Changed into False Negative by removing con-
junction word

Original: ’When was CSS developed? CSS
was first proposed by Håkon Wium Lie on
October 10, 1994.[19] At the time, Lie was
working with Tim Berners-Lee at CERN.[20]
Several other style sheet languages for the
web were proposed around the same time,
and discussions on public mailing lists and
inside World Wide Web Consortium resulted
in the first W3C CSS Recommendation
(CSS1)[21] being released in 1996. In
particular, a proposal by Bert Bos was
influential; he became co-author of CSS1,
and is regarded as co-creator of CSS.[22]’

Modified: ’When was CSS developed? CSS
was first proposed by Håkon Wium Lie on
October 10, 1994.[19] At the time, Lie was
working with Tim Berners-Lee at CERN.[20]
Several other style sheet languages for the
web were proposed around the same time, and
discussions on public mailing lists and inside
World Wide Web Consortium resulted in the
first W3C CSS Recommendation (CSS1)[21]
being released in 1996. In particular, a pro-
posal by Bert Bos was influential; he became
co-author of CSS1,’

Box 6: Changed into False Negative by limiting the
input length to 100 tokens

F Lab 5. Answer Token Mapping to
Context

Function below is pseudo-code of how a tokenized
answer is mapped to a tokenized prompt to deter-
mine its starting-ending indices within the prompt.
It assumes that the prompt will contain the answer
as a continuous sequence of tokens.

1 def getStartEndIndices(prmpt, ans):
2 if len(ans) == 0:
3 return (-1, -1)
4

5 sll = len(ans)
6 tmp = (i for i, e in enum(prmpt) if e == ans[0])
7 for ind in tmp:
8 comp = prmpt[ind : ind + sll]
9 if comp == ans:

10 return (ind, ind + sll - 1)
11 return (-1, -1)

G Lab 5. Failed Answer Mappings

Examples of some of the question+context tok-
enized sequences that the mapping algorithm failed



to map the answer indices to. Ground truth is high-
lighted with bold and differences in tokenization
are highlighted with underline

Prompt: [’ what’, ’ percentage’, ’ of’, ’
the’, ’ american’, ’ population’, ’ is’, ’
vegetarian’, ’?’, ’ according’, ’ to’, ’ a’,
’ report’, ’ in’, ’ 0000,’, ’ the’, ’ num-
ber’, ’ of’, ’ consumers’, ’ claiming’,
’ to’, ’ be’, ’ vegan’, ’ has’, ’ risen’, ’
to’, ’ 0%’, ’ in’, ’ the’, ’ us’, ’.’, ’[’,
’000’, ’]’, ’ in’, ’ 0000,’, ’ a’, ’ harris’,
’ poll’, ’ national’, ’ survey’, ’ of’, ’
0,000’, ’ adults’, ’ aged’, ’ 00’, ’ and’,
’ over’, ’ found’, ’ that’, ’ eight’, ’ mil-
lion’, ’ americans’, ’,’, ’ or’, ’ 0.0%,’,
’ ate’, ’ a’, ’ solely’, ’ vegetarian’, ’
diet’, ’,’, ’ and’, ’ that’, ’ one’, ’ mil-
lion’, ’,’, ’ or’, ’ 0.0%,’, ’ ate’, ’ a’, ’
strictly’, ’ vegan’, ’ diet’, ’.’, ’[’, ’000’,
’]’] Answer: [’0.0%’]

Box 7: Comma missing in answer

Prompt: [’ milloin’, ’ charles’, ’ fort’,
’ syntyi’, ’?’, ’ charles’, ’ hoy’, ’ fort’,
’ (0.’, ’ elokuuta’, ’ (’, ’joidenkin’, ’
lähteiden’, ’ mukaan’, ’ 0.)’, ’ 0000’,
’ –’, ’ 0.’, ’ toukokuuta’, ’ 0000)’, ’
oli’, ’ yhdysvaltala’, ’inen’, ’ kirjail-
ija’, ’ ja’, ’ paran’, ’ormaal’, ’ien’, ’
ilmiöiden’, ’ tutkija’, ’.’]
Answer: [’0.’, ’elokuuta’, ’(’,
’joidenkin’, ’lähteiden’, ’mukaan’,
’0.)’, ’0000’]

Box 8: Parenthesis missing before "0."

Prompt:
[’ 日本テレビ系列’, ’『’, ’zip’,
’!』 ’, ’の初代’, ’の司会’, ’は誰’,
’ですか’, ’?’, ’ 初代’, ’総合司会’,
’には’, ’桝’, ’太一’, ’(’, ’日本テレ
ビアナウンサー’, ’)’, ’と’, ’関根’,
’麻里’, ’が起用された’, ’[’, ’注釈’,
’ 0’, ’]’, ’。 0’, ’人は’, ’『’, ’ズ
ームイン’, ’!!’, ’朝’, ’!』’, ’以降
の’, ’日本テレビ’, ’が製作’, ’す
る’, ’平日朝の’, ’情報番組’, ’(’,
’いわゆる’, ’平日の’, ’歴代’, ’『’,
’ズームイン’, ’!!』 ’, ’シリーズ’,
’)’, ’の’, ’司会者’, ’の中で’, ’就
任’, ’時’, ’最年少’, ’である’, ’。 ’]

Answer: [’ 桝’, ’太一’, ’(’, ’日本
テレビアナウンサー’, ’)’, ’と’, ’関
根’, ’麻里’]

Box 9: Unicode underscore generated during tokeniza-
tion

H Lab 5. Basic LSTM Predictions

One example per language is depicted from the
beamsearch model taken from the last, 75th train-
ing epoch. Ground truth is highlighted bold and
predicted label is shown in the parenthesis.

Prompt:
kauan ko lasia on valmistettu ? vanhin
tunnettu lasi laatu on alkali kal kki

lasi , jota valmistetaan so odan ,
hiekan ja kalkin seoksesta . egyptissä
siitä valmistettiin lasit ettuja kivi
helmiä jo noin vuonna 0000 eaa . [ 0
] jo varhain havaittiin , että lasi voitiin
saada värill iseksi lisäämällä siihen
eri malmeja . tällaista värillistä lasia
käytettiin keramiikan lasit ukseen
sekä jalokivien jäljit elmiin . [ 0 ]

Pred: 0000(B) eaa(I)

Box 10: Basic LSTM Finnish answer predition



ァ Prompt:
国際サッカー連盟はいつ設立し
た ? 0000 年 0 月 00 日、 フラン
ス首都パリで、 フランス、 オ
ランダ、 スイス、 デンマーク、
ベルギー、 スウェーデン、 スペ
インの 0ヶ国 (但し、 実際は、
スウェーデンと スペインは 会議
に出ることができず、 デンマー
クとフランスが代理した )が集
まり、 世界の サッカー 統括 組
織設立の会議を開催した [ 0]。
同年 0月 00日までの 0日間で組
織名を 「国際サッカー連盟 (略
称 : fifa )」と決めた。 わずか 00
名の fifa総会 ( fifa congress )は、
フランスのスポーツ統括団体 us
f sa ( union des soci ét és frança ises
de sports ath lé ti ques )のフットボ
ール委員会幹事 (フランス体育
連盟書記長 )のロベール・ゲラ
ン (フランス人 )を初代 fifa会長
に選出した。 このときゲランは
00 歳であった。 任期は、 わず
か 0年だったが、その間に、英
国本土 0協会 (地域協会認可の
経緯の項で後述 )、 ドイツ、 オ
ーストリア、 イタリア、 ハンガ
リーの合わせて 0つの国と地域
の協会が fifa設立翌年の 0000年
に加盟した [ 0]。 欧州以外では
第 0代 fifa会長ダニエル・ウー
ルフォール (イギリス人。 イン
グランドサッカー協会会長も兼
務 )時代に、 南アフリカが 0000
年に加盟したのが最初である。

Pred: 0000(B) 年(I) 0(I) 月(I) 00(I)
日(I)

Box 11: Basic LSTM answer estimation Japanese

I Lab 5. LSTM-BeamSearch Predictions

One example per language is depicted from the
beamsearch model taken from the last, 75th train-
ing epoch. Ground truth is highlighted bold and
predicted label is shown in the parenthesis.

Prompt: What is a way to increase
your wound healing speed ? wound
care enc ourages and speeds wound
healing via cleaning and protection
from rein jury or infection . de-
pending on each patient ’ s needs
, it can rang e from the simplest
first aid to entire nursing specialties
such as wound , ost omy , and conti-
nence nursing and burn center care .

Pred: encourages(B) and(I) speeds(I)
wound(I) healing(I) via(I) cleaning(I)
and(I) protection(I) from(I) rein(I)
jury(I) or(I) infection(I) .(I) depend-
ing(I) on(I) each(I) patient(I) ’(I)
s(I) needs(I) ,(I) it(I) can(I) range(I)
from(I) the(I) simplest(I) first(I) aid(I)
to(I) entire(I) nursing(I) specialties(I)
such(I) as(I) wound(I) ,(I) ost(I)
omy(I) ,(I) and(I) continence(I) nurs-
ing(I) and(I) burn(I) center(I) care(I)
.(I)

Box 12: Beam search answer estimation for English



Prompt:
kauan ko lasia on valmistettu ? vanhin
tunnettu lasi laatu on alkali kal kki

lasi , jota valmistetaan so odan ,
hiekan ja kalkin seoksesta . egyptissä
siitä valmistettiin lasit ettuja kivi
helmiä jo noin vuonna 0000 eaa . [ 0
] jo varhain havaittiin , että lasi voitiin
saada väri ll iseksi lisäämällä siihen
eri malmeja . tällaista värillistä lasia
käy tettiin keramiikan lasit ukseen
sekä jalokivien jäljit elmiin . [ 0 ]

Pred:
tunnettu(B) lasi(I) laatu(I) on(I) al-
kali(I) (I) kal(I) kki(I) (I) lasi(I) ,(I)
jota(I) valmistetaan(I) so(I) odan(I)
,(I) hiekan(I) ja(I) kalkin(I) seok-
sesta(I) .(I) egyptissä(I) siitä(I) valmis-
tettiin(I) lasit(I) ettuja(I) kivi(I) -
(I) helmiä(I) jo(I) noin(I) vuonna(I)
0000(I) eaa(I) .(I) [(I) 0(I) ](I)
jo(I) varhain(I) havaittiin(I) ,(I) että(I)
lasi(I) voitiin(I) saada(I) värill(I)
iseksi(I) lisäämällä(I) siihen(I) eri(I)
malmeja(I) .(I) tällaista(I) värillistä(I)
lasia(I) käytettiin(I) keramiikan(I) la-
sit(I) ukseen(I) sekä(I) jalokivien(I)
jäljit(I) elmiin(I) .(I) [(I) 0(I) ](I)

Box 13: Beam search answer estimation for Finnish

ァ Prompt: 国際サッカー連盟はいつ設
立した ? 0000年 0月 00日、 フランス
首都パリで、 フランス、 オランダ、
スイス、 デンマーク、 ベルギー、 ス
ウェーデン、 スペインの 0ヶ国 (但し
、 実際は、 スウェーデンと スペイン
は 会議 に出 ることができず、 デンマ
ークとフランスが代理した )が集まり
、 世界のサッカー統括組織設立の会
議 を開催した [ 0]。 同年 0 月 00 日ま
での 0 日間で 組 織 名を 「 国際サッカ
ー連盟 (略称 : fifa )」と決めた。 わず
か 00名の fifa総会 ( fifa congress )は、
フランスのスポーツ統括団体 lé ti ques
) の フットボール 委員会 幹事 ( フラン
ス 体育連盟 書記長 ) の ロベール ・ ゲ
ラン ( フランス人 ) を初代 fifa 会 長 に
選出した。 このときゲランは 00歳で
あった。 任期は、 わずか 0 年 だった
が、 その間に、 英国 本土 0 協会 ( 地
域協会認可の経緯の項で後述 )、 ド
イツ、 オーストリア、 イタリア、 ハ
ンガリーの 合わせて 0 つの 国と 地域
の 協会が fifa 設立 翌年の 0 000 年に 加
盟した [ 0]。 欧州 以外では 第 0 代 fifa
会長 ダニエル ・ ウール フォール ( イ
ギリス人。 イングランドサッカー協会
会長 も兼務 ) 時代に、 南アフリカ が
0000 年に 加盟 したのが 最初である。

Pred: 設立した(B) ?(I) 0000(I) 年(I) 0(I)
月(I) 00(I) 日(I)、 (I) フランス(I) 首都(I)
パリで(I)、 (I) フランス(I)、 (I) オラン
ダ(I)、 (I) スイス(I)、 (I) デンマーク(I)
、 (I)ベルギー(I)、 (I)スウェーデン(I)、
(I)スペインの(I) 0(I)ヶ国(I) ((I)但し(I)、
(I) 実際は(I)、 (I) スウェーデンと(I) ス
ペインは(I)会議(I)に出(I)ることができ
ず(I)、 (I) デンマーク(I) と(I) フランス
が(I)代理(I)した(I) )(I)が集まり(I)、 (I)
世界の(I)サッカー(I)統括(I)組織(I)設立
の(I) 会議(I) を開催した(I) [(I) 0](I)。 (I)
同年(I) 0(I)月(I) 00(I)日までの(I) 0(I)日
間で(I)組織(I)名を(I)「(I)国際サッカー
連盟(I) ((I)略称(I) :(I) fifa(I) )」(I)と(I)決
めた(I)。 (I)わずか(I) 00(I)名の(I) fifa(I)
総会(I) ((I) fifa(I) congress(I) )(I)は(I)、(I)
フランスの(I)スポーツ(I)統括(I)団体(I)
us(I) f(I) sa(I) ((I) union(I) des(I) soci(I) ét(I)
és(I) frança(I) ises(I) de(I) sports(I) ath(I) lé(I)
ti(I) ques(I) )(I)の(I)フットボール(I)委員
会(I) 幹事(I) ((I) フランス(I) 体育連盟(I)
書記長(I) )(I)の(I)ロベール(I)・(I)ゲラ
ン(I) ((I)フランス人(I) )(I)を初代(I) fifa(I)
会長(I) に選出した(I)。 (I) このとき(I)
ゲ(I) ランは(I) 00(I) 歳であった(I)。 (I)
任期は(I)、(I)わずか(I) 0(I)年(I)だった
が(I)、(I)その間に(I)、(I)英国(I)本土(I)
0(I)協会(I) ((I)地域(I)協会(I)認可(I)の経
緯(I)の項(I)で(I)後述(I) )、 (I)ドイツ(I)
、 (I) オーストリア(I)、 (I) イタリア(I)
、 (I)ハンガリーの(I)合わせて(I) 0(I)つ
の(I)国と(I)地域の(I)協会が(I) fifa(I)設
立(I)翌年の(I) 0000(I)年に(I)加盟した(I)
[(I) 0](I)。(I)欧州(I)以外では(I)第(I) 0(I)
代(I) fifa(I)会長(I)ダニエル(I)・(I)ウー
ル(I) フォール(I) ((I) イギリス人(I)。 (I)
イングランド(I) サッカー協会(I) 会長(I)
も兼務(I) )(I)時代に(I)、(I)南アフリカ(I)
が(I) 0000(I)年に(I)加盟(I)したのが(I)最
初である(I)。(I)

Box 14: Beam search answer estimation for Japanese



J Lab5: BiLSTM training
hyperparameters

Table 9: Training hyperparameters

LSTM Dim 300
Dropout Probability 0.25
Batch Size 256
Learning Rate 0.001
Epochs 75

K Lab 6. Training Results per Epoch, per
Language

Figure 14: XLM-RoBERTa: F1 Binary classification
training English

Figure 15: XLM-RoBERTa: F1 Binary classification
training Finnish

Figure 16: XLM-RoBERTa: F1 Binary classification
training Japanese

Figure 17: M-BERT: F1 Binary classification training
English

Figure 18: M-BERT: F1 Binary classification training
Finnish



Figure 19: M-BERT: F1 Binary classification training
Japanese

Figure 20: M-BERT: Sequence Labeling Training En-
glish

Figure 21: M-BERT: Sequence Labeling Training
Finnish

Figure 22: M-BERT: Sequence Labeling Training
Japanese

Figure 23: XLM-RoBERTa: Sequence Labeling Train-
ing English

Figure 24: XLM-RoBERTa: Sequence Labeling Train-
ing Finnish



Figure 25: XLM-RoBERTa: Sequence Labeling Train-
ing Japanese

L Lab6: Training hyperparameters

Table 10: Training hyperparameters

Dropout Probability 0.25
Batch Size 32
Learning Rate 0.00005
Epochs 40

M Lab5: Overview of parsed-question
context pairs

Table 11: Overview of parsed question-context pairs
from training (Tr) and validation (Vl) splits post-
tokenization

Ans Unans Total Fails >512
Eng Tr 2892 3693 6550 804 35
Eng Vl 414 495 905 81 4
Fin Tr 5652 6846 12474 1203 24
Fin Vl 663 843 1502 180 4
Jap Tr 669 4389 4967 3720 91
Jap Vl 65 518 577 453 6

N Lab6: Overview of parsed
question-context pairs per model

Table 12: Overview of parsed question-context pairs
from training (Tr) and validation (Vl) splits with M-
BERT and XML-RoBERTa tokenizers

Ans Unans Total Fails >512
M-BERT
Eng Tr 3551 3670 7221 108 60
Eng Vl 454 491 945 39 6
Fin Tr 6365 6799 13164 430 107
Fin Vl 783 836 1619 52 15
Jap Tr 2953 4250 7203 1200 375
Jap Vl 353 507 860 135 41
XML-R
Eng Tr 3299 3663 6962 356 71
Eng Vl 454 491 945 39 6
Fin Tr 6256 6813 13069 554 78
Fin Vl 755 841 1596 80 10
Jap Tr 671 4284 4955 3539 284
Jap Vl 79 511 590 419 27


