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Abstract:

In the recent years, speech enhance-
ment has benefited from advances in
diffusion-based generative modeling
since new models have been proposed
that have set new state-of-the-art re-
sults. The core idea of diffusion theory
is to gradually perturb a data distribu-
tion with noise to then learn how to
reverse this noise. This study aims to
investigate potential optimizations of
a diffusion system, namely a particu-
lar component of them called the noise
scheduler.
The noise scheduler defines the
amount of noise in a sample during
the diffusion processes, and literature
suggests that it is a crucial compo-
nent to diffusion systems that can
be optimized seperately from other
components.
Four experiments were conducted,
each testing different modifications of
the noise scheduler. In conclusion, it
was found that the modification of the
noise scheduler could potentially op-
timize output quality, although with
certain assumptions about the train-
ing of the model. Future work could
include development of sampling al-
gorithms, testing the noise schedulers
and samplers against different train-
ing methods for the score model and
extending on modifications of noise
schedulers.

http://www.aau.dk


The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.



Contents

1 Introduction 3

2 Background 7
2.1 Foundations of Diffusion-Based Generative Models . . . . . . . . . . 7

2.1.1 Score-Based Generative Models (SGM) . . . . . . . . . . . . . 8
2.1.2 Score-Based Modelling through Stochastic Differential Equa-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 State-of-the-art: Diffusion Models in Speech Enhancement 11

4 Methodology 15
4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Voicebank-DMD Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Performed Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 16
4.3.2 Experiment 1: Swapping Scheduler Functions . . . . . . . . . 17
4.3.3 Experiment 2: Derivative Modification . . . . . . . . . . . . . 17
4.3.4 Experiment 3: Timestep Offset . . . . . . . . . . . . . . . . . . 18
4.3.5 Experiment 4: Non-uniform Timesteps . . . . . . . . . . . . . 19

4.4 Quantitative Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4.1 PESQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.2 STOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.3 DNSMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.4 WARP-Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Results 23
5.1 Unprocessed Voicebank-DMD Performance . . . . . . . . . . . . . . . 23
5.2 SGMSE Baseline Results . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Experiment 1: Scheduler Functions . . . . . . . . . . . . . . . . . . . . 25
5.4 Experiment 2: Derivative Modification . . . . . . . . . . . . . . . . . . 26
5.5 Experiment 3: Timestep Offset . . . . . . . . . . . . . . . . . . . . . . 27
5.6 Experiment 4: Non-uniform Timesteps . . . . . . . . . . . . . . . . . 28

v



Contents 1

6 Discussion 29

7 Conclusion 31

8 Acknowledgments 33

Bibliography 35

9 Appendix 41
9.1 Annealed Langevin Dynamics Algorithm . . . . . . . . . . . . . . . . 41
9.2 Noise Schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.3 Voicebank-DMD Subsplit . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.4 Plots of Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.5 Plots of Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.6 Plots of Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.7 Plots of Experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



2 Contents



Chapter 1

Introduction

Speech enhancement deals with improving the perceptual aspects such as intelli-
gibility and quality of impaired speech signals by minimizing additive noise and
artifacts that can occur due to poor acoustic environments or impaired transmis-
sion systems. Over the decades, many different approaches have been proposed
that rely on analytical means [1, 2], although advances in deep learning have cre-
ated a new paradigm based on generative modelling due to higher output quality
and better generalization [3, 4, 5]. The core idea of generative models is to learn
the distribution of clean speech, instead of a direct noise-to-clean mapping. Pre-
vious works have used Generative Adversarial Network (GAN) architectures [6, 7,
8] and Variational Auto Encoders (VAE) [9, 10] to perform speech enhancement,
while more recent works utilize diffusion-based models [11, 12, 13, 14] that out-
perform the VAE and GAN models. A core difference between GAN/VAE and
diffusion-based approaches is that in diffusion the output is iteratively and pro-
gressively refined, whereas VAE and GAN normally uses a single-pass, although
[8] proposes a system architecture that also uses chained GANs to have a degree
of step-wise refinements.

Diffusion theory for speech enhancement has been successfully adopted from
the image processing community [15, 16] where the models are applied to tasks
such as image inpainting, image colorization, class-conditioned generation [11, 15,
17]. The image diffusion models can also be conditioned on textual prompts for
generating images, for example Dall-E 2, Stable Diffusion and others [18]. These
advances can also inspire synthetic dataset generation for fields which are no-
torious for sparsely available datasets, e.g. medical [19]. For audio processing,
diffusion-based models have shown impressive results for speech enhancement
[13, 14] music generation and denoising [20, 21], and speech source separation
[22]. This suggests that the diffusion-based generative modelling theory is flexible
and is not tied to a particular domain.

The backbone of diffusion-based generative models is a neural network that
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4 Chapter 1. Introduction

estimates a noise gradient and a sampling algorithm that uses the noise gradient
to generate samples by performing a denoising routine. Literature suggests [23]
that these two components can be decoupled and optimized separately, therefore in
theory, sampling algorithms and their underlying components can be interchanged
to better accommodate any potential shortcomings of the trained model. See Figure
1.2 for a taxonomy of diffusion model.

Figure 1.1 shows the diffusion process within a speech enhancement context.
During the forward process, a data distribution is gradually perturbed with Gaus-
sian noise, and during the reverse process the noise is reverted. For noise reversion,
the sampler and neural network both work in tandem to eliminate the noise com-
ponent in a step-by-step manner and nudge the sample towards the final clean
distribution.

Figure 1.1: Illustration of an audio spectrogram and the iterative process of diffusion-based speech
enhancement during forward and reverse processes. Illustration from [13]

The aim of this work is to make use of this decoupling and investigate opti-
mizations in the sampler, more specifically a particular component of it called noise
schedule. In essence, the noise schedule defines the amount of diffusion noise that a
sample should have during forward and reverse diffusion processes. Meaning that
lower schedule values would result in a less corrupted sample, and higher sched-
ule values would result in a more corrupted sample. As suggested in literature
[23, 24], the noise schedule is crucial to performance and does not always require
following the same patterns as during training, and optimal schedule function can
be task dependent [24]. In the diffusion community, improving the output qual-
ity and/or decreasing the computational costs of sampling are common research
problems that are being addressed [25, 26, 27, 28, 11]. Therefore, the primary ob-
jective is to investigate the interplay between the generated output and the noise
scheduler function to discover potential modifications that could improve the per-
formance quantified by perceptual metrics. This is done through performing an
empirical study by proposing a series of experiments that interchange and modify
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the noise scheduler, while fixing other crucial variables such as the score network,
sampling routine or stochasticity.

Figure 1.2: Taxonomy of diffusion models as per [11]
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Chapter 2

Background

Diffusion models are part of a category probabilistic generative models [11] and in
recent years have become a rapidly growing modelling approach within image,
speech processing and NLP communities [11, 29, 12, 30] due to setting new state-
of-the-art results for their respective applications. This chapter aims to describe
the theoretical foundation of diffusion-based generative models and their different
components.

2.1 Foundations of Diffusion-Based Generative Models

The seminal contribution [17] borrows concepts from non-equilibrium statistical
physics where the evolution from state 0 to 1 is modelled as a stochastic process
using Markov chains [31, 32], meaning that it can be viewed as a recursive process
where the result at a particular time step t depends on the previous time step t-1.

The fundamental procedure of these models involves the progressive distortion
of input data using noise injections (also called perturbation kernels) which usually
consist of Gaussian noise. The data is recursively corrupted until it is practically
indistinguishable from noise. This is followed by the reversal of the perturbations
to generate a new data sample from a noise distribution. These two processes are
referred to as the diffusion and reverse-diffusion processes, respectively, and each
discrete perturbation or noise-reversion is a diffusion step (see Figure 2.1 for an
illustration).

There are three dominant formulations of diffusion models: denoising diffu-
sion probabilistic models [17, 16] (DDPMs), score-based generative models (SGMs) [15]
and stochastic differential equations (Score SDEs) [33]. The following sections of this
chapter of this work will go deeper into the theory behind the SGM and Score SDE
architectures, since Score SDE builds upon SGM. Furthermore, later chapters de-
scribe experiments that are carried out using a model from the Score SDE family
[13].

7



8 Chapter 2. Background

Figure 2.1: Illustration of the diffusion and reverse-diffusion processes. Each denoising step requires
estimation of a score function that is described by a gradient pointing to the highest data likelihood.
Image from [11].

2.1.1 Score-Based Generative Models (SGM)

The score-based generative model (SGM) [15] describes the inference architecture
as a tandem of two main components: score network parametrized by θ which is
used for estimating the noise gradient; and a sampler consisting of a Langevin
dynamics algorithm that makes use of the aforementioned score network to generate
samples.

Given a dataset consisting of independent and identically distributed samples
xi ∈ R of an unknown data distribution pdata(x), a score is defined as the gradient
of the log probability density function with respect to the data ∇x log p(x). The
score is crucial during reverse diffusion steps, and it essentially is a vector field
that describes how the noise within the generated sample should be shaped at a
particular time step to nudge the sample towards the highest probability-density.
The score is estimated by a parametrized neural network called score network that
is trained by minimizing the following loss function 2.1 [34]

1
2

Epdata

[
||sθ(x)−∇x log pdata(x)||2

]
(2.1)

where sθ is a neural network output that aims to approximate the score, and
∇x log pdata(x) is the log-probability of the noise distribution that acts as a frame
of reference for the model within the function. During training, the ∇x log pdata(x)
can be computed because the data corruption process is controlled. In an ideal sce-
nario, the training achieves sθ(x) ≈ ∇x log pdata(x). The authors note that gradual
data perturbation with varied levels of Gaussian noise is effective because it evenly
corrupts the original sample. Furthermore, it allows for obtaining a sequence of
gradually corrupted distributions that are used during training, that eventually
converge to a distribution imperceptible of Gaussian noise irrespective of their
prior distribution. These gradual perturbations allow training a single network
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that estimates scores corresponding to all noise levels.
The score is then used to produce samples by a sampling routine, specifically

authors propose an annealed Langevin dynamics algorithm. Formally, Langevin
dynamics simulates the motion of a particle within a potential energy landscape.
Within the generative modelling context, the particle is the synthetic sample and the
potential energy landscape is the score. The Langevin method recursively computes
Eq. 2.2 for generating discrete samples [15]

xt = xt−1 +
ϵ

2
∇x log p(xt−1) +

√
ϵzt. (2.2)

where xt is sample at time step t; zt ∼ N (0, I) is Gaussian noise; ϵ is noise-term
magnitude; ∇xlogp(xt−1) is the score function.

During inference, Langevin dynamics algorithm is used with gradually de-
creasing noise denoted by σ. Typically, output with σmin is to be approximately
equal to the original data pdata(x); σmax is approximately equal to Gaussian noise
with fixed mean and variance N (x; 0, σmax I). See Appendix 9.1 for pseudocode
and further details on Langevin dynamics.

2.1.2 Score-Based Modelling through Stochastic Differential Equations

As mentioned in the previous section, score-based modelling with Langevin Dy-
namics (SMLD) has two main components: score that is predicted using a neural
network; sampler (e.g. Langevin dynamics algorithm) that uses the estimated score
to generate samples.

The Score-Based SDE contribution [33] expresses the previously mentioned dis-
crete Markov Chain approaches [16, 15] with stochastic differential equations. The
use of SDEs enables to describe the forward-diffusion process as a continuum of
distributions that evolve over time, instead of using a finite number of noise dis-
tributions when perturbing a data distribution. Eq. 2.3 describes the generic form
SDE that the score-based SDE approach is based on. In practice, Eq. 2.3 is normally
used during training to gradually corrupt a data distribution.

dx = f (x, t)dt + g(t)dw (2.3)

Where t is time step, x is the data distribution, g is the diffusion coefficient and
w is Wiener process (in practice represented as Gaussian noise).

A key property is that reversing this process satisfies a reverse-time SDE [35],
that can be derived from the forward SDE, see Eq. 2.4. Therefore, it is possible to
produce samples during reverse-diffusion by using a reverse-SDE if the score of a
distribution is given at each intermediate time step t.

dx =
[

f (x, t)− g2(t)∇x log pt(x)
]

dt + g(t)dw (2.4)
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where ∇xlogpt(x) is the score, x is the perturbed data distribution, g is the
diffusion coefficient and w is noise. In practice, the Eq. 2.4 is normally used to
generate samples, this is the generic form of samplers for the SDE-based diffusion
model family. Furthermore, it is important to note that samplers themselves can
be multistep routines that combine reverse-time SDE solving with other processing
steps.

The generic form SDE (Eq. 2.3) contains g(t) which is a function that gives diffu-
sion coefficients. The diffusion coefficients act as a magnitude control of noise at a
particular time step t. In practice when performing inference, the g(t) is discretized
according to a certain number of time steps t and in literature this is referred to as
a noise scheduler. It is suggested that the noise scheduler is crucial to performance,
furthermore an optimal noise schedule can be task-dependent [23, 24]. If contin-
uous time steps t ∈ [0, 1] are used during inference, then a noise schedule during
inference does not necessarily need to be the same as during training [23, 24].

Generally, the formalization of SDEs contribute to flexible sampling because
any general-purpose SDE solver can be used to integrate the reverse-time SDE for
sample generation. Furthermore, the generation process can be conditioned on
information that is not available during training, this enables applications such as
class-conditional generation, data inpainting and other inverse problems [11].

The training of the SDE-based model is performed by minimizing the following
loss function Eq. 2.5 which is a modified form of the loss function 2.1

θ∗ = arg min
θ

Et

[
λ(t)Ex(0)Ex(t)|x(0)

(∥∥∥sθ(x(t), t)−∇x(t) log p0t(x(t)|x(0))
∥∥∥2

2

)]
,

(2.5)
where λ(t) is a weighting function, t is uniformly sampled time steps, sθ(x(t), t)

is the model’s prediction, ∇x(t) log p0t(x(t)|x(0)) is the true score function com-
puted for x(t) given x(0).

Expressing Discretized Sampling Processes in Continuous Time

Previous works [16, 15] express the reverse-diffusion process as a Markov Chains
in discrete time steps. These formalizations can be expressed and are proposed
by the authors [33] in continuous time as SDEs as well as a modification based on
[16].

Since the main focus of this study are experiments with interchanged noise
schedule functions, Appendix 9.2 contains the noise scheduler formalizations taken
from [33, 23, 13].



Chapter 3

State-of-the-art: Diffusion Models
in Speech Enhancement

Speech enhancement in itself is the task of recovering clean speech from noisy
speech signals that are impaired by noise or reverberation [36]. Speech enhance-
ment has been a hot research topic over the years due to the importance of speech
in human communications [37, 38], data recovery [39], automated speech detection
[40] or communications and hearing aids [41].

By analysing the underlying general statistics of speech, the clean speech sig-
nal is estimated by removing a noise estimate from noisy speech. Traditionally
speech enhancement has been studied as a signal processing problem with analyti-
cal approaches, this was followed by data-driven supervised learning [1] and deep
learning [42, 43, 44] using common network architectures such as convolutional
neural networks and recurrent neural networks.

In recent years, speech enhancement has experienced a paradigm shift towards
generative modelling by exploiting neural network architectures such as GAN [6, 8,
45] or diffusion-based [13, 14, 46, 12]. The fundamental difference is that generative
models learn the underlying distribution of the training data to generate new sam-
ples with similar properties. Essentially generative models generate output that,
ideally, should be imperceptible from the ground truth; as opposed to analytical
approaches where input is directly operated on and modified. It is worth noting
that the general theory described in Chapter 2 was put to use by research teams
for tackling image processing tasks. Therefore, Chapter 3 reviews current state-
of-the-art for conditional diffusion-based models for audio processing - specifi-
cally speech enhancement, conditioned on noisy speech to provide clean speech.
This chapter also implicitly demonstrates the flexibility of diffusion theory. The
SGMSE+ contribution [13] is described in more detail as it is used as a reference
model for performing experiments described in Chapter 4.

CDiffuSE is a seminal contribution that adapts the DDPM [16] for speech en-

11



12 Chapter 3. State-of-the-art: Diffusion Models in Speech Enhancement

hancement task. The task adaption is performed by adapting the forward-diffusion
process of using Gaussian noise with its mean being an interpolation of clean and
noisy speech. The authors evaluate their model on Voicebank-Demand[40] dataset.

NU-Wave [47] is a pioneering work for speech upsampling and bandwidth
extension using a diffusion-based generative model. The authors claim state-of-the-
art results at the time of publishing when compared to other generative techniques
such as GAN or baseline linear-interpolation.

UNIVERSE [14] motivation and main contribution is identified in the lack of
flexible, general-purpose speech enhancement systems that can handle many dif-
ferent types of noise, e.g. echo, silent gaps, bandwidth reduction, clipping. All
while retaining realism and without the introduction of critical voice artefacts
[14]. The authors propose a generic model that can handle 55 distortion noise
types and evaluate it by objective metrics as well as a listening test based on
MUSHRA methodology. The base approach uses score-based SDE architecture
and employ two neural networks to work in tandem, in a predictor-corrector scheme
[33]. The authors note an observation that during their tests, listeners tend to pre-
fer generative-based speech enhancement over output produced with regression.
Furthermore, while their results suggest improvements over previous speech en-
hancement frameworks, the listening test subjects still preferred ground-truth more
often than the audio generated with, UNIVERSE with most problematic noise types
being generally low signal-to-noise ratios and long reverbs [14].

As mentioned previously, a common practice for forward and reverse diffusion
steps is to corrupt data with Gaussian noise and afterwards invert it. Cold diffu-
sion [48] for speech enhancement borrows the core idea from an image processing
contribution [49] where the authors propose perturbing the data with a broader
family of degradations, e.g. downsampling, masking, blurring. The work implies
that such changes to sampling are valuable as real-world noise characteristics are
rarely Gaussian noise and generalize better for arbitrary noise degradations. The
authors perform sampling using a discrete Markov Chain approach, and propose
a training scheme unfolded training for the core model that enables it to potentially
correct for its mistakes by leveraging two approximations of a clean output from a
degraded input.

Diffiner [50] is proposed that is trained using only clean audio, and it describes
the diffusion process as a discrete Markov chain. The authors note that the model
is intended to be used as a refiner for improving perceptual speech metric results.
The basic idea of the model is that it relies on a pre-processed, already enhance
speech signal, and it computes the noise variance between the enhanced vs noisy
signals. The noise variance estimate is then used to guide the generative model to
refine the signal.
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Speech Enhancement and Dereverberation with Diffusion-based Generative Mod-
els

SGMSE+ [13] is recently published work that is based on SDE diffusion architec-
ture. Authors propose three separate models: one for dereverberation, and two for
ambient noise (traffic, café, outdoors, etc.) denoising. The task at hand is consid-
ered conditional generation because the generative process is conditioned on a noisy
speech signal for which a clean version is to be generated. The authors follow
the idea of incorporating the conditioning process directly into the forward and
reverse processes by designing the following SDE which is the expansion of the
generic form Eq.2.3 [13].

dxt = γ(y− xt)
:= f (x,t)

dt +

[
σmin

(
σmax

σmin

)t
√

2 log
(

σmax

σmin

)]
:= g(t)

dw (3.1)

Where xt is the present state with initial condition being x0 that represents clean
speech; y is noisy signal, w is Wiener process (in practice Gaussian noise); f(x, t) is
drift coefficient; g(t) is diffusion coefficient that controls the amount of Gaussian noise
σ injected at each forward step; γ is a stiffness constant.

As described in Section 2.1.2 and Eq. 2.4, the Eq. 3.1 has the following reverse
SDE [13].

dxt =
[
− f (xt, y) + g(t)2sθ(xt, y, t)

]
dt + g(t)dw (3.2)

Where sθ(xt, y, t) is a neural network parametrized by θ that estimates the score.
Since equation 3.1 describes a Gaussian process, this enables direct sampling of
xt by using a perturbation kernel that dictates the type and magnitude of noise to
be applied to the input at each diffusion step. The perturbation kernel is a normal
distribution that the score model is fitted to. During training, the θ parameters are
estimated, and the overall training objective is as follows:

argminEt,(x0,y),z,xt|(x0,y)

[
||sθ(xt, y, t) +

z
σ(t)
||22

]
(3.3)

Eq. 3.3 essentially shows that the network is learning to minimize the L2-
norm of the explicit output of the model sθ that is summed with varied levels of
Gaussian noise z

σ(t) that depend on the time step t. Authors specify the noise range
as σmin = 0.05, σmax = 0.5. The audio signals and time step are specified implicitly
as parameters to functions. This learning objective creates a three-way mapping of
a model’s output at a time step t with a corresponding variance σ value, under the
condition that z is always uniformly spread.

Sampling is inspired from [33] in a predictor-corrector (PC) scheme, where the
predictor solves the reverse-time SDE and the corrector refines the sample. For
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the predictor, the authors use Euler-Maruyama method, and for the corrector the
authors use annealed Langeving Dynamics, which is described in more detail in
Appendix 9.1.

For evaluating their models, the authors use two datasets; first one being WSJ0-
CHiME3, which is a mix of WSJ0[51] clean speech and noise from CHiME3 [52];
second one being Voicebank-Demand [53]. The idea is to train on one dataset and
test on the other to cross-validate the model’s generalization. The authors quantify
their results by performing a listening test based on MUSHRA [54] methodology.
Also, quantitative evaluation metrics are computed such as POLQA [55], PESQ
[56], ESTOI [57] as well as scale invariant Signal-To-Distortion, Signal-To-Inference
and Signal-To-Artifact ratios [58].



Chapter 4

Methodology

As described in the Introduction, the core of this study is to explore the interplay of
noise schedulers within samplers. This is done by taking a reference model, choos-
ing a dataset, deciding on quantitative metrics and observing the changes in the
resulting output when the corresponding noise scheduler functions are swapped
as part of the sampling routine. Details of these steps are described in the following
chapters.

4.1 Experimental Setup

For the experiments, the SGMSE+[13] 1 is taken as the reference model and de-
scribed in more detail in Section 3. The SGMSE+ contribution proposes three
separate speech enhancement models, two intended for general-purpose ambient
noise (e.g. traffic, café), and one for dereverberation. This study uses the general-
purpose ambient noise model that is trained on WSJ0-CHiME3 dataset, which is
WSJ0 [59] dataset of speech signals that are corrupted with noise from CHiME3
[52]. For the WSJ0-CHiME3 model, the authors evaluate it on Voicebank-DMD [53]
dataset to better cross-validate generalization. The motivation for using the WSJ0-
CHiME3 model is namely due to Voicebank-DMD dataset being freely available2

as this choice to stay more consistent with the SGMSE+ publication.
Furthermore, the choice for the particular reference model is motivated by the

fact that it claims to have achieved state-of-the-art results at the time of publish-
ing, as well as its accessibility and relative simplicity of the system. Accessibility
in the sense that all models from the original publication are open-sourced and
Voicebank-DMD dataset is open for public access. And simplicity in the sense that
the proposed work does not deploy two separate neural networks for a predictor-

1https://github.com/sp-uhh/sgmse
2https://datashare.ed.ac.uk/handle/10283/2791
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corrector scheme, but rather employs the corrector directly in the sampling process.

4.2 Voicebank-DMD Dataset

As mentioned in the previous section, the experiments rely on Voicebank-DMD
dataset, which is a combination of utterances from Voicebank [60] dataset with arti-
ficially added noise from DEMAND database [61]. The validation split of Voicebank-
DMD contains 824 utterances of spoken English by native British speakers, 393 data
points from a male speaker and 431 from a female speaker from Voicebank. The
added noise varies in its signal-to-noise ratio between 17.5dB-2.5dB with 5dB in-
crements, the added noise is from ambient environments such as transport, street,
domestic and office.

4.3 Performed Experiments

Due to computational constraints, it is not feasible to run parameter sweep for em-
pirical observations of model behaviour using a full dataset. Therefore, to enable
faster feedback loops of generating results and drawing conclusions, preliminary
experiments were carried out with a sub-split of the validation set of Voicebank-
DMD dataset. The sub-split contains 35 pseudo-randomly selected data points, see
Appendix 9.3 for a full list. The initial list of data points was obtained by using
Python library Numpy random number generator and was fixed for all experi-
ments. The following experiments were carried out while retaining the baseline
hyperparameter configuration of the model as specified per [13].

4.3.1 Implementation Details

An important implementation detail to note is that the baseline scheduler function
(Eq.9.6) outputs a different effective σ range than the σmin and σmax is provided
at input. Therefore, all swapped scheduler functions in Experiment 1, as well
as modifications to Mean Reverse VE (Experiment 2-4, Eq.9.7) function outputs
are linearly scaled by using Eq 4.1 to match the effective σ range of the baseline
scheduler function,

f (σ, x, y) =
(σ− σmin)

(σmax − σmin)
∗ (y− x) + x (4.1)

Where σ is a vector of values from a function that is being evaluated, x is the
effective minimum and y is the effective maximum of the baseline function that the σ

vector is scaled to. This is done to ensure a more fair comparison and to also match
the range of σ values that the score model is actually trained on.
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The tests are performed for a varied amount of diffusion step counts to ob-
serve the impact of decreasing step count on quality and how this can be balanced
with scheduler function modifications or interchanges. The output of Eq 9.5 is re-
versed, since the authors of it assume an opposite direction of evolution in time as
compared to other functions.

4.3.2 Experiment 1: Swapping Scheduler Functions

As per [23, 24] the scheduler functions σ are a crucial part of diffusion-based sam-
pling, and they can be task-specific and do not need to be the same ones as during
training of a model. Therefore, an experiment is performed of swapping out the
baseline scheduler function Eq.9.6 with other scheduler functions to test for their
interchangeability. The following functions proposed in literature - Linear9.4, Vari-
ance Exploding 9.1, Variance-Preserving 9.2, Sub Variance Preserving 9.3, Nvidia
9.5 with γ = 1.5 hyperparameter. Performed with diffusion step counts n=10 and
n=30.

Figure 4.1: Experiment 1: Example overview of all tested scheduler functions

4.3.3 Experiment 2: Derivative Modification

Considering the baseline scheduler function Eq.9.6, introduce an alpha modifier to
change its derivative, see Eq. 9.7. The alpha values were determined empirically
based on observations from Experiment 1 which are later described in Section 5.3.
The intention is to increase the amount of noise removed at the first-half of the time
steps and smoothen out the ∆σ at the second half of the time steps. The assumption
is that the output quality would start to improve at earlier time steps, which would
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potentially lead to higher maximum values of the objective metrics. See Figure 4.2
for an illustration of the alpha modifier effect. Performed with diffusion step counts
n=10 and n=30.

Figure 4.2: Experiment 2: Example overview of how the baseline scheduler function changes with
the introduced modifier

4.3.4 Experiment 3: Timestep Offset

While retaining the σ values that are computed using baseline parameters, this
experiment aims to non-linearly offset the corresponding time steps with a higher
density towards the end of the function curve.

This is done by projecting the baseline σ v to an alpha-modified curve and derive
the corresponding t values from it, see Figure 4.3 for an example. In practice, the
σ value projection happens in the following sequence:

Algorithm 1 Projection of σ values to a modified curve

1: Generate diffusion step vector X of length n
2: Generate diffusion step vector Y of length n× 100
3: Sample σmrve(X)

4: Sample σmrvealpha(Y, α = 0.8)
5: Perform linear interpolation of σmrve values between σmrvealpha and Y to obtain

X′

6: return (σmrv, X′)

In the Algorithm 1, the idea behind Step 2 is to effectively oversample the
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σmrvealpha function to decrease the rounding errors when performing the linear in-
terpolation.

The aim of this experiment is to investigate the effects of changing t values that
are specified implicitly during network training, as per training objective Eq.3.3.
The effect of alpha values below 1 causes the sampling points to compress with
a higher density towards the end of the function, as well as implicitly decreases
the amount of noise to be removed at a given time step t when compared to the
baseline function. The core idea behind this is also supported in [23] as the au-
thors suggest that models trained on minimizing L2-norm may have a tendency to
remove too much noise, hence this experiment tests an attempt to balance out this
tendency. Performed with diffusion step counts n=10, n=15 and n=30.

Figure 4.3: Experiment 3: Projecting baseline sigma values to an alpha-modified schedule function to
derive the new t values. The blue curve with black dots depicts the baseline function with baseline
discretization points, whereas the orange dashed curve with orange X markers represents the σ

projection to an alpha=0.8 modified baseline function.

4.3.5 Experiment 4: Non-uniform Timesteps

As shown in Experiment 3, the result of projecting σ values have two implicit
effects on the relationship of t and σ. Firstly, an offset is created between the
t and σ values that were used during the training, secondly, the discretization
points are compressed with a higher density towards the end of the function. To
better understand how these two effects affect the output, this experiment projects t
values back on to the baseline function, essentially removing the σ and t offset but
retaining the discretization point compression. As discussed and shown in later
chapters, most of the quality improvements happen approximately in the second-
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half or last-third of the diffusion steps. Therefore, this experiment tests whether
non-uniform discretization steps would decrease the rough threshold at which the
output quality starts to improve and potentially reach a higher peak due to the
momentum.

The new σ and t values are obtained by taking the X’ values specified as per
Algorithm 1 and sampling the baseline scheduler Mean Reverse VE function (Eq.
9.6. This essentially creates a projection of the modified σ values back on to the
baseline function, with the only difference being that the discretization points are
spaced in a non-linear manner. See Figure 4.4 for an illustration. Performed with
diffusion step counts n=10, n=15 and n=30.

Figure 4.4: Experiment 4: Orange dashed curve with ’X’ represented the discretization from Experi-
ment 3 and the blue curve with black dots represents the newly obtained discretization points for the
baseline function.

4.4 Quantitative Metrics

The results are quantified by computing perceptual quality metrics classified under
two major families - intrusive (uses reference) and non-intrusive (no reference). A
challenge with generative speech models is that the original and generated speech
signals can have imperceptible structural differences, for example slight changes
in phoneme or pitch. This means that the generated and reference speech signals
may not align spectrotemporally and this effect may bias the results of certain
perceptual metrics [62, 63, 64]. In total, four distinct metrics were chosen to better
cross-validate the output quality and are further described in more details within
the following.



4.4. Quantitative Metrics 21

4.4.1 PESQ

Published as an ITU P.862[56] recommendation for modelling subjective tests of
perceived voice quality. PESQ uses a reference and a degraded signal to perform
sample-by-sample analysis and is still used as part of speech evaluation [14, 13]
even though it may be considered inappropriate [62, 50, 65] as it penalizes based
on signal differences that are present but insignificant in generative speech. The
metric outputs a MOS [66] (mean-opinion score) that is a coefficient between 1
(bad) to 5 (excellent). Implementation used from 3.

4.4.2 STOI

A metric intended for measuring speech intelligibility [67] and uses linear com-
parisons between the reference and degraded signal, also used previously in [14]
and modified version in [13]. The output of this metric is a coefficient from 0 to 1,
essentially indicating a positively correlating percentage of intelligibility - higher
is better. Implementation used from 4

4.4.3 DNSMOS

Non-intrusive metric based on a deep learning model that estimates a MOS score
[68]. Trained on a labelled dataset of about 120k audio clips with associated MOS
score. The dataset consists of 600 audio clips each processed by 200 noise suppres-
sion algorithms and afterwards crowdsourcing the associated MOS scores through
listening tests. The metric computation is performed with DNSMOS implementa-
tion from GitHub5 and it adopts an ITU-T P.835[69] methodology meaning that the
results are separated into three submetrics - speech quality, background noise, overall
audio quality. The results in this work are generated by using only the overall audio
quality submetric.

4.4.4 WARP-Q

Specifically intended for evaluating generative neural speech [62]. It uses an analyt-
ical approach of preprocessing the audio signals by removing non-speech segments
and afterwards it computes mel-frequency cepstrum coefficients (MFCC) which is
a feature extraction technique [70, 71]. Afterwards, the MFCC’s are compared us-
ing subsequence dynamic time warping [72] to minimize a cost function and find the
minimum distance between the two audio signals. The final score is a coefficient

3https://github.com/ludlows/PESQ
4https://github.com/mpariente/pystoi
5https://github.com/microsoft/DNS-Challenge
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with negative correlation, meaning that lower is better. Implementation used from
6.

6https://github.com/wjassim/WARP-Q
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Results

The following chapter summarizes the results obtained from the experiments de-
scribed in Section 4, as well as baseline results of an unprocessed Voicebank-DMD
dataset, and SGMSE baseline model configuration. It is important to note that
box-plots are generated by accumulating the best performing diffusion-steps per
each metric, per each datapoint. In most cases the best performing diffusion-step
is the last one, although as later shown the last step may sometimes have a drop in
performance.

5.1 Unprocessed Voicebank-DMD Performance

Evaluation metrics are computed for the full Voicebank-DMD dataset, as well as
the 35 sample subsplit that is used to generate the results in the later subsections.
This is done to set a global minimum for each metric that would enable a relative
comparison between the processed and unprocessed data.
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(a) 35 random sample subsplit. (b) Full dataset.

Figure 5.1: Box plots of evaluation metrics computed for the unprocessed dataset

5.2 SGMSE Baseline Results

Computed by using default settings as per [13] for number of time steps n=30
and n=10. Figure 9.9 depicts box-plots with quantitative metrics, and Figure 9.17
depicts the metric evolution throughout the whole of diffusion process for each
data point. This is intended to give a qualitative intuition of how the results evolve
during reverse-diffusion.

As per both Figures 9.9 and 9.17, it can be noted that a decrease of diffusion
steps decreases the quality of results with respect to median and lowest-scoring
data point. For PESQ and WARP-Q metrics, it is possible to observe an increased
standard deviation, although the increase is only towards the positive range. This
suggests that, for certain data points, the model was able to perform a substan-
tially higher quality reverse-diffusion when higher resolution diffusion steps were
present.
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Figure 5.2: Box plots of reverse diffusion

Figure 5.3: Overview of score evolution for all datapoints during reverse-diffusion. Timesteps are
0-indexed.

5.3 Experiment 1: Scheduler Functions

A summary of results is presented in Tables 5.1, with full plots available in Ap-
pendix 9.4. As expected, the results are consistently better with the default number
of diffusion-steps n=30.

The improvement of metric scores appears to be non-linear depending on the
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PESQ STOI WARPQ DNSMOS

Linear
n=10 1.472 (± 0.262) 0.869 (± 0.141) 0.951 (± 0.141) 2.607 (±0.285)
n=30 2.163 (± 0.69) 0.922 (± 0.058) 0.761 (± 0.198) 2.925 (± 0.192)

SubVP
n=10 1.503 (± 0.254) 0.889 (± 0.065) 0.888 (± 0.145) 2.569 (± 0.246)
n=30 2.174 (± 0.673) 0.921 (± 0.057) 0.768 (± 0.197) 2.913 (± 0.197)

VE
n=10 1.572 (± 0.281) 0.89 (± 0.065) 0.894 (± 0.144) 2.602 (± 0.259)
n=30 2.123 (± 0.67) 0.919 (± 0.58) 0.774 (± 0.193) 2.897 (± 0.206)

VP
n=10 1.47 (± 0.282) 0.861 (± 0.068) 0.975 (± 0.141) 2.575 (± 0.254)
n=30 2.155 (± 0.686) 0.921 (± 0.058) 0.756 (± 0.198) 2.921 (± 0.199)

Nvidia n=10 1.47 (± 0.236) 0.88 (± 0.067) 0.908 (± 0.14) 2.575 (± 0.254)
n=30 2.199 (± 0.674) 0.922 (± 0.057) 0.762 (± 0.198) 2.934 (± 0.187)

Baseline
n=10 1.49 (± 0.249) 0.884 (± 0.067) 0.896 (± 0.139) 2.561 (± 0.265)
n=30 2.175 (± 0.671) 0.922 (± 0.056) 0.765 (± 0.198) 2.927 (± 0.187)

Table 5.1: Summary of results for Experiment 1 for n=10 and n=30 with mean value for each metric
and standard deviation denoted in the brackets

scheduler function. For example, the SubVP and VE functions appear to ever-so
improve the results with respect to baseline at n=10, although this improvement
fades in n=30 where the Nvidia schedule function appears to take a slight lead.
Also, as shown in Figures 9.2, 9.8 and 9.10, for n=10 the last diffusion-step appears
to degrade the output quality with linear, variance-preserving and nvidia scheduler
functions. Generally, from the output evolution plots in Appendix 9.4 it can be
noted that most quality improvements happen in approximately the second-half of
the diffusion-process.

5.4 Experiment 2: Derivative Modification

As per Figure 4.2, four modified versions of the baseline scheduler function were
tested with an introduced alpha modifier. Summary of results is presented in Table
5.2 with full plots available in Appendix 9.5.

Table 5.2 depicts inconsistent improvements among metrics for n=10 reverse-
diffusion step count, and a consistent decrease in performance for n=30. The
reverse-diffusion evolution as per Appendix 9.5 also show that generally the higher
alpha values tend to decrease the amount of steps at which significant improve-
ments in output quality can be observed. It is noted that this particular modifica-
tion to the scheduler function takes an insignificant positive effect on certain metrics
at certain alpha values, and generally can yield a little-to-negative effect on output
quality.
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PESQ STOI WARPQ DNSMOS

Alpha=1.05
n=10 1.498 (± 0.26) 0.882 (± 0.067) 0.905 (± 0.139) 2.563 (± 0.272)
n=30 2.17 (± 0.671) 0.921 (± 0.056) 0.764 (± 0.2) 2.928 (± 0.186)

Alpha=1.1 n=10 1.513 (± 0.272) 0.881 (± 0.067) 0.913 (± 0.14) 2.566 (± 0.28)
n=30 2.167 (± 0.67) 0.921 (± 0.057) 0.768 (± 0.201) 2.912 (± 0.191)

Alpha=1.2 n=10 1.548 (± 0.304) 0.879 (± 0.066) 0.928 (± 0.144) 2.586 (± 0.287)
n=30 2.156 (± 0.67) 0.921 (± 0.057) 0.767 (± 0.2) 2.912 (± 0.194)

Alpha=1.5 n=10 1.504 (± 0.296) 0.864 (± 0.064) 1.017 (± 0.114) 2.498 (± 0.284)
n=30 2.089 (± 0.68) 0.916 (± 0.06) 0.782 (± 0.206) 2.888 (± 0.217)

Baseline n=10 1.49 (± 0.249) 0.884 (± 0.067) 0.896 (± 0.139) 2.561 (± 0.265)
n=30 2.175 (± 0.671) 0.922 (± 0.056) 0.765 (± 0.198) 2.927 (± 0.187)

Table 5.2: Summary of results for Experiment 2 for n=10 and n=30 with mean value for each metric
and standard deviation denoted in the brackets. Best performance is highlighted per each unique
number of diffusion steps n.

5.5 Experiment 3: Timestep Offset

As shown in Figure 4.3, a modified version of the baseline function was tested,
for which new t values were projected for corresponding baseline σ values. Table
5.3 summarizes the results with an additional data point for n=15 sampling steps.
The table shows consistent improvements of the alpha=0.8 function and suggests
that this may be a viable modification to a scheduler function for increasing the
performance. It can also be observed that the relative rate of improvement between
alpha vs baseline for a given n starts to consistently decline as n grows. Full plots
are available in Appendix 9.6

PESQ STOI WARPQ DNSMOS

Alpha=0.8
n=10 1.945 (± 0.526) 0.903 (± 0.064) 0.834 (± 0.169) 2.809 (± 0.234)
n=15 2.135 (± 0.606) 0.915 (± 0.06) 0.779 (± 0.189) 2.918 (± 0.227)
n=30 2.211 (± 0.669) 0.923 (± 0.55) 0.759 (± 0.201) 2.944 (± 0.181)

Baseline n=10 1.49 (± 0.249) 0.884 (± 0.067) 0.896 (± 0.139) 2.561 (± 0.265)
n=15 1.93 (± 0.471) 0.911 (± 0.06) 0.805 (± 0.178) 2.858 (± 0.238)
n=30 2.175 (± 0.671) 0.922 (± 0.56) 0.765 (± 0.198) 2.927 (± 0.187)

Table 5.3: Summary of results for Experiment 3 for n=10 and n=30 with mean value for each metric
and standard deviation denoted in the brackets. Best performance is highlighted per each number
of diffusion steps n.
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5.6 Experiment 4: Non-uniform Timesteps

The results in Table 5.4 shows that the non-uniform discretization has a varied and
inconsistent performance. For n=10, the PESQ and WARPQ values are improved
but their standard deviations decrease in performance, STOI and DNSMOS have
minor improvements. Similarly, for n=15 and n=30, most improvements could be
cancelled out by the increase of standard deviation besides PESQ for n=30 and
n=15. Similarly, as in Experiment 3, the relative improvement for both functions
per each metric appears to follow a logarithmic progression where there is a greater
performance leap is from n=10 to n=15 than n=15 to n=30. See Appendix 9.7 for
box and score evolution plots.

PESQ STOI WARPQ DNSMOS

Alpha=0.8
n=10 1.464 (± 0.238) 0.878 (± 0.067) 0.912 (± 0.134) 2.567 (± 0.265)
n=15 2.1 (± 0.603) 0.91 (± 0.061) 0.791 (± 0.193) 2.884 (± 0.253)
n=30 2.187 (± 0.671) 0.922 (± 0.056) 0.761 (± 0.203) 2.936 (± 0.192)

Baseline n=10 1.49 (± 0.249) 0.884 (± 0.067) 0.896 (± 0.139) 2.561 (± 0.265)
n=15 1.93 (± 0.471) 0.911 (± 0.06) 0.805 (± 0.178) 2.858 (± 0.238)
n=30 2.175 (± 0.671) 0.922 (± 0.56) 0.765 (± 0.198) 2.927 (± 0.187)

Table 5.4: Summary of results for Experiment 4 for n=10 and n=30 with mean value for each metric
and standard deviation denoted in the brackets. Best performance is highlighted per each number
of diffusion steps n.
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Discussion

The results generally show that for 3 out of 4 Experiments, the modifications do
not appear to yield significant improvements, yet further tests for statistical signif-
icances between the sample groups could be performed to quantify that.

In Experiments 1 and 2, the results are inconsistent where no particular function
or modification dominates by a great amount. At a closer inspection of Figure
9.11 and it can be noted that the plotted scheduler functions from log-files do not
match up the expectations described in Methodology 4.2. This is an indication of
a faulty implementation, and that Experiment 1 should be repeated. In essence,
The scheduler functions that had been tested, have had their σ values projected
on to the Mean Reverse VE function, therefore in practice they depict the results
of different variants of non-linear time step spacings, similar to what is done in
Experiment 4.

In Experiment 2, it is possible to observe minor gradual improvements for
PESQ and DNSMOS metrics for n=10 diffusion steps, although STOI and WARPQ
all other metrics are degrading, although the improvements are minor with in-
creasing deviations, therefore further statistical tests could be performed to test
the sample group distributions against the baseline distribution. For n=30 there is
also a consistent drop in performance as the alpha factor is increased. Furthermore,
qualitatively observing the evolution plots in Appendix 9.5, it can be noted that
the increase of alpha modifier also increases the diffusion step at which significant
improvements occur when compared against baseline (Figure 9.17), this is an in-
dication that the modification impairs the diffusion system. Overall, the positive
alpha modification does not appear to definitively give a positive impact on the
performance.

Interestingly enough, in Experiment 3, the applied modifications consistently
appear to improve the performance through better performing means and lower
standard deviations (except for WARPQ). This could be explained by the theory
proposed in [23] that models trained on minimizing the L2 norm tend to regress
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towards the mean and have a tendency to remove too much noise, therefore this
can be compensated by adding more stochasticity noise with the scheduler. Con-
sidering Figure 4.3, it shows that for each given time step, the noise magnitude is
higher than that of the baseline function. This artificial increase on the noise-term is
also proposed in Algorithm 2 in [23] although embedded all-together in a different
sampling methodology. The increase of diffusion time steps t, decreases the rela-
tive performance improvement, which may further back the claim that increase of
diffusion steps further stabilizes the whole system because the samples are gener-
ated more gradually. Furthermore, for n=10 number of diffusion steps, Experiment
3 modification is the only one that enables the system to actually outperformed the
unprocessed data shown in Section 5.1.

If a closer look is taken at the score evolution plots in Appendix 9.6, it is notice-
able that the last diffusion step tends to significantly drop in performance. It is im-
portant to note that the box-plots and results are presented by taking the absolute
best performing time step, not necessarily the last step. The drop in performance
could be affected by the fact that the last step of the function is normalized back to
the baseline function, resulting in a more intense drop of σ values. Therefore, the
last step could also potentially benefit from an offset.

In Experiment 4, the results are inconsistent in their improvements, better per-
forming means are roughly balanced out by worse performing standard deviations.
This could be explained that the methodology projects the modified values back on
to the original function as per Figure 4.4, therefore the deviations in results could
occur due to non-uniform sampling time steps.

Intuitively, by looking at the score evolution plots in Figure 9.17, an assump-
tion could be made that a non-uniform time step distribution with a higher density
towards the end of the function could decrease the threshold at which noticeable
improvements begin to form, potentially leading to higher max values. In Exper-
iment 4, the methodology implicitly compresses the sampling points towards the
end of the function without any σ/t offsets with respect to the baseline scheduler.
Unfortunately, the score evolution plots in Appendix 9.7 do not appear to show a
that significant improvements start to form at earlier time steps. This indicates that
the quality improvements in the later diffusion steps may be more dependent on
the progression of the diffusion process rather than the discretization steps them-
selves.
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Conclusion

The work investigated the impact of noise scheduler modifications on the perfor-
mance across four different experiments. The modifications in 3 out of 4 exper-
iments showcased inconsistency in results where no single function considerably
outperformed the baseline, although there is a strong foundation to believe that Ex-
periments 1 have faulty results, therefore should be repeated. Furthermore, results
can still be further analysed by performing statistical significance tests between the
samples and the baseline.

As diffusion step count increases, the functions tend to become more inter-
changeable and stable, with fewer deviations between the results. The findings
also depicted that the last diffusion step in Experiment 3 tends to suffer from a no-
ticeable performance drop when evaluated with lower diffusion step counts. This
could be due to the methodology of how the noise scheduler function is modified
with intermediate time steps modified, but first and last steps retained as per the
original function. Nevertheless, a scheduler function could be optimized to yield
better output quality as suggested in Experiment 3 and supported by literature,
although this particular modification may only be applicable to models trained by
minimizing an L2 norm.

This work suggest a natural continuation of exchanging sampling routines all-
together by interchanging the reverse-time SDE solvers (predictors) or any addi-
tional optimization techniques that can further refine the output (correctors). Such
experiments can be repeated with the same general methodology as described in
this work, with inclusion of interchanged scheduler functions to further quantify
and observe their impact on results. Furthermore, a more in-depth investigation
can be performed on the sampling stability to explain why the decreased step-
count tends to cause a performance drop in the last diffusion step, for example by
experimenting with linearly offset σ values while retaining t values. This could be
done empirically through a mapping of decreased diffusion steps and modifica-
tions to the noise scheduler to observe if there is a consistent correlation of lower-
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end sigma values and the performance drop, this would further comprehend the
outcomes of Experiment 4. As also described in literature [23], improvements on
the score network can also be quantified by testing different training methods of the
score model, continuing the tests with stochastic differential equation formalism,
or extracting a corresponding ordinary differential equation to then compare the
quality of output.
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Chapter 9

Appendix

9.1 Annealed Langevin Dynamics Algorithm

Algorithm 2 is the pseudo code of the Langevin dynamics sampler as proposed by
[15].

Algorithm 2 Annealed Langevin dynamics

Require: {σi}L
i=1, ε, T

1: Initialize x̃0

2: for i← 1 to L do
3: αi ← ε · σ2

i /σ2
L

4: for t← 1 to T do
5: Draw zt ∼ N (0, I)
6: x̃t ← x̃t−1 +

αi
2 sθ(x̃t−1, σi) +

√
αizt

7: end for
8: x̃0 ← x̃T

9: end for
10: return x̃T

The algorithm requires a sequence of σ values that represent the noise vari-
ance, ϵ a coefficient that is a tunable hyperparameter for changing the step size
and T number of steps to execute the core of Langevin dynamics algorithm before
updating the step-size.

Step 1. Initializing the starting point of our sample, in practice this would be Gaus-
sian noise.

Step 2. Initialize the outer loop of the algorithm over a series of different noise levels
(variances)

41
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Step 3. Calculate the step size αi that controls the amount of change applied in the
algorithm.

Step 4. Initialize the inner loop for computing the Langevin dynamics formula

Step 5. Draw a Gaussian noise sample

Step 6. Compute Eq. 2.2

Step 8. Update the output state and prepare for the next iteration of the whole algo-
rithm

The idea behind the two nested loops are that the Step 4. to Step 6. can perform
exploration of the data space, with gradually decreasing step-size in the outer loop
on Step 3, this allows for higher quality sampling and aids to prevent of getting
stuck in a local minima [15].
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9.2 Noise Schedulers

As mentioned in Chapter 2, the diffusion process is described by first corrupting a
data distribution with varied levels of Gaussian noise, the transitions between two
discretized points in time are called perturbation kernels. The reversion of Gaussian
noise is learnable as per 2.5 because the forward process is controlled and the
ground-truth perturbation kernels in the forward-diffusion are known.

The generic form Gaussian distribution is formalized as follows: X ∼ N (µ, σ),
where X is a sample drawn from a normal distribution N that is centred around
some mean µ with a variance of σ. This can be expanded to an equation of
p0t(x(t)|x(0)) = N (µ, σ), where p0t(x(t)|x(0) describes the transition from 0 to
t for a state x(t) given x(0).

In diffusion models, the variance parameter of Gaussian noise is commonly a
function, that when discretized, is referred to as the noise scheduler in the litera-
ture. The following subsections present different σ variance formalizations that are
used for in experiments described in Chapter 4.

Variance Exploding

Described in [11] Equation 31.

σ(t, σmax, σmin) = σmin

(
σmax

σmin

)t

(9.1)

Variance Preserving

Described in [11] Equation 33.

σ(t, σmax, σmin) =

√
1− e−

1
2 t2(σmax−σmin)−tσmin (9.2)

Sub-Variance Preserving

Described in [11] Equation 34.

σ(t, σmax, σmin) = 1− e−
1
2 t2(σmax−σmin)−tσmin (9.3)

Linear

Linear schedule is used in [73], and can be constructed as follows considering
SGMSE+ constraints.

σ(t, σmax, σmin) = (σmax − σmin) ∗ t + σmin (9.4)
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Nvidia

Described in [23] Equation 5.

σ(t, σmax, σmin, γ) =

(
σ

1
γ

max + t
(

σ
1
γ

min − σ
1
γ

max

))γ

(9.5)

SGMSE+ Variance Exploding

Described in [13] Equation 6. Referred to as Mean Reverse VE in Chapter 4 and 5

σ(t, σmax, σmin, γ)2 =
σ2

min

(
( σmax

σmin
)2t − e−2γt

)
log( σmax

σmin
)

γ + log( σmax
σmin

)
(9.6)

SGMSE+ Variance Exploding with an Alpha Modifier

Based on [13] Equation 6 with an added α exponent highlighted in the function.
Referred to as Mean Reverse VE Alpha in Chapter 4 and 5

σ(t, σmax, σmin, γ, α)2 =
σ2

min

(
( σmax

σmin
)2tα − e−2γt

)
log( σmax

σmin
)

γ + log( σmax
σmin

)
(9.7)
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9.3 Voicebank-DMD Subsplit

Sorted list of pseudo randomly selected datapoints from the Voicebank-DMD vali-
dation split for performing preliminary tests.

1. p232_011

2. p232_017

3. p232_032

4. p232_060

5. p232_084

6. p232_090

7. p232_108

8. p232_159

9. p232_186

10. p232_213

11. p232_254

12. p232_256

13. p232_266

14. p232_269

15. p232_286

16. p232_301

17. p232_362

18. p232_413

19. p257_011

20. p257_015

21. p257_030

22. p257_049

23. p257_064

24. p257_086

25. p257_087

26. p257_132

27. p257_142

28. p257_241

29. p257_247

30. p257_259

31. p257_313

32. p257_317

33. p257_329

34. p257_343

35. p257_370
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9.4 Plots of Experiment 1

Box and evolution plots of Linear, SubVP, VE, VP and Nvidia schedule functions
for Experiment 1.

Figure 9.1: Box plots of reverse diffusion for linear

Figure 9.2: Overview of 0-indexed score evolution for all datapoints during reverse-diffusion for
linear
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Figure 9.3: Box plots of reverse diffusion for subVP

Figure 9.4: Overview of 0-indexed score evolution for all datapoints during reverse-diffusion for
subVP



48 Chapter 9. Appendix

Figure 9.5: Box plots of reverse diffusion for VE

Figure 9.6: Overview of 0-indexed score evolution for all datapoints during reverse-diffusion for VE
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Figure 9.7: Box plots of reverse diffusion for VP

Figure 9.8: Overview of 0-indexed score evolution for all datapoints during reverse-diffusion for VP
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Figure 9.9: Box plots of reverse diffusion for nvidia

Figure 9.10: Overview of 0-indexed score evolution for all datapoints during reverse-diffusion for
nvidia
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Figure 9.11: Overview of all scheduler functions stacked and plotted from log files generated during
Experiment 1. Seperated plots are available in the supplementary material.
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9.5 Plots of Experiment 2

Box and evolution plots for a modified derivative of the baseline σ function. Alpha
∈ [1.05, 1.1, 1.2, 1.5]

Figure 9.12: Box plots of reverse diffusion for alpha=1.05

Figure 9.13: Overview of 0-indexed score evolution for all datapoints during reverse-diffusion for
alpha=1.05
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Figure 9.14: Box plots of reverse diffusion for alpha=1.1

Figure 9.15: Overview of 0-indexed score evolution for all datapoints during reverse-diffusion for
alpha=1.1
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Figure 9.16: Box plots of reverse diffusion for alpha=1.2

Figure 9.17: Overview of 0-indexed score evolution for all datapoints during reverse-diffusion for
alpha=1.2
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Figure 9.18: Box plots of reverse diffusion for alpha=1.5

Figure 9.19: Overview of 0-indexed score evolution for all datapoints during reverse-diffusion for
alpha=1.5
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Figure 9.20: Overview of all scheduler functions used in Experiment 2, stacked and plotted from log
files generated during Experiment 2. Seperated plots are available in the supplementary material.
Dots denote sampling points
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9.6 Plots of Experiment 3

Box plots and score evolution for Experiment 3 of modified t step values for fixed
σ values computed from the baseline function.

Figure 9.21: Box-plot and score evolution for modified baseline scheduler with number of 0-indexed
timesteps t=10.

Figure 9.22: Box-plot and score evolution for modified baseline scheduler with number of 0-indexed
timesteps t=15.
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Figure 9.23: Box-plot and score evolution for modified baseline scheduler with number of 0-indexed
timesteps t=30.

Figure 9.24: Overview of all scheduler functions stacked and plotted from log files generated during
Experiment 3. Seperated plots are available in the supplementary material.
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9.7 Plots of Experiment 4

Box plots and score evolution for Experiment 4 of computed σ values based on t
values from Experiment 3.

Figure 9.25: Box-plot and score evolution for modified non-linear discretization step spacing based
on a modified baseline function from Experiment 3. Number of 0-indexed timesteps t=10.

Figure 9.26: Box-plot and score evolution for modified non-linear discretization step spacing based
on a modified baseline function from Experiment 3. Number of 0-indexed timesteps t=15.
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Figure 9.27: Box-plot and score evolution for modified non-linear discretization step spacing based
on a modified baseline function from Experiment 3. Number of 0-indexed timesteps t=30.

Figure 9.28: Overview of all scheduler functions stacked and plotted from log files generated during
Experiment 4. Seperated plots are available in the supplementary material.
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