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Introduction
Generative AI Models

 Discriminative AI – learn the decision boundary
 Conv.Neural Nets (CNN), Multilayer Percept. (MLP), Transformers

 Generative AI – learn the underlying data distribution
 Variational Autoencoders (VAE), Generative Adversarial Networks 

(GAN), Boltzmann machines, Transformers, Diffusion models

 Dependent on the objective and training setup

Image from https://vitalflux.com/generative-vs-discriminative-models-examples/
Image from https://github.com/NVlabs/stylegan
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Introduction
Diffusion-Based Generative AI Models

 Diffusion (iterative process)
 Forward-diffusion: corrupt a datapoint with noise

 Reverse-diffusion: reverse the noise into data

 This process can be optionally be guided via conditioning

Image from 
https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-2/
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Introduction
Applications of Diffusion Models

 Image processing
 Restoration (super resolution, inpainting, colorization)

 Anomaly detection, semantic segmentation

 Audio processing
 Speech and music enhancement/generation (communications, restoration)

 Dataset generation

“We’ll eat frozen pizzas all day.. All day every day”
UNIVERSE: https://serrjoa.github.io/projects/universe/

Noisy / Enhanced

Left: “Panda mad scientist mixing sparkling chemicals”
Right: “A corgi’s head depicted as an explosion in nebula”

OpenAI’s Dall-E 2
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Background
Diffusion-Based Speech Enhancement

 Task is conditional generation, we want to guide the process 
based on an impaired speech signal

 Ref. contribution* takes theory from image processing

 Forward-process expressed using an SDE

Image from*

*Richter, et.al. "Speech Enhancement and Dereverberation with Diffusion-Based Generative Models", IEEE/ACM Transactions on Audio, 
Speech, and Language Processing
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Background
Diffusion-Based Speech Enhancement: Forward Process

 
// y = noisy, x0 = clean, γ = stiffness scalar

  // set of dw magnitudes

Image from*

*Richter, et.al. "Speech Enhancement and Dereverberation with Diffusion-Based Generative Models", IEEE/ACM Transactions on Audio, 
Speech, and Language Processing
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Background
Diffusion-Based Speech Enhancement: Reverse Process

Image from*

*Richter, et.al. "Speech Enhancement and Dereverberation with Diffusion-Based Generative Models", IEEE/ACM Transactions on Audio, 
Speech, and Language Processing

 The reverse process is also called sampling

 Predict by integrating reverse time SDE with an SDE solver

 Correct by numerical optimization
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Background
Diffusion-Based Speech Enhancement: Reverse Process

 

Image from*

*Richter, et.al. "Speech Enhancement and Dereverberation with Diffusion-Based Generative Models", IEEE/ACM Transactions on Audio, 
Speech, and Language Processing

// Gradient of log-probability density w/r to data
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Background
Diffusion-Based Speech Enhancement: Reverse Process

 

Image from*

*Richter, et.al. "Speech Enhancement and Dereverberation with Diffusion-Based Generative Models", IEEE/ACM Transactions on Audio, 
Speech, and Language Processing

// Gradient of log-probability density w/r to data

// In practice a parametrized neural net sθ

In the ideal scenario sθ = 
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Background
Diffusion-Based Speech Enhancement: Noise Schedule

  σ controls the noise injections in forward/reverse processes
within a defined min/max range

 Used during 
 Training: 

 Sampling: Corrector algorithm (score and Gaussian noise scaling)
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Background
Diffusion-Based Speech Enhancement: Noise Schedule

  Sampling routines in production do not need to follow 
training [2]

 Schedules can be fine-tuned during inference and is crucial 
for performance [1, 2]

[1] Chen T., On the importance of noise scheduling for diffusion models. arXiv preprint arXiv:2301.10972, 2023
[2] Karras T., et.al.. Elucidating the design space of diffusion-based generative models. NeurIPS, 2022
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Problem Statement

  Diffusion models have flexible, tunable moving components
 Component of the sampling routine – noise schedule

 Investigate the interplay generated output and the noise 
scheduler

 Empirical study through a
set of experiments
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Methodology

  Four experiments set up
 Interchanged scheduler functions

 Baseline scheduler with modified derivative

 Baseline scheduler with modified timesteps

 Baseline scheduler with non-uniform timesteps

 Quantified through perceptual metrics
 STOI (0-1), WARP-Q (.. – 0), DNSMOS and PESQ (1 – 5)

 Results generated with max value per each metric

 Tests performed with a pseudo-random 35 datapoint test set

 Fixed model, stochasticity, sampling routine
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  Baseline function mean_reverse_VE swapped with 5 other 
functions

 Given 0.5 – 0.05 range, normalize to effective values of the 
baseline

Experiment 1
Interchanged Scheduler Functions
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Experiment 1
Interchanged Scheduler Functions

NOISY    BASELINE VP CLEAN

N=10

N=30

N=10

N=30

“Downing street will make the second appointment in the Scotland office today..”
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Experiment 1
Interchanged Scheduler Functions
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  Introduce an α modifier, vary the curve steepness

 Idea: significant improvement threshold decrease
with potentially higher peak performance

Experiment 2
Baseline Function with Modified Derivative
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Experiment 2
Baseline Function with Modified Derivative

 N=10 mild-to-none increase in performance

 N=30 mild-to-none decrease of performance

 No clear winner for the modifications
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Experiment 2
Baseline Function with Modified Derivative
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Experiment 3
Baseline Function with Timestep Offset

 Apply an α modifier and project the unmodified σ 

 Idea: Compress the sampling points, decrease the amount 
of noise per step
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Experiment 3
Baseline Function with Timestep Offset

 Consistent improvement over baseline

 Effect decays with increase of step size

NOISY    BASELINE Alpha 0.8         CLEAN

N=10

N=15

N=10

N=15
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Experiment 3
Baseline Function with Timestep Offset
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Experiment 4
Baseline Function with Non-uniform Timesteps

 Exp 3. schedule σ projected back to the baseline 

 Idea: Compress sampling points towards the end, move 
back to familiar σ-t ratios
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Experiment 4
Baseline Function with Non-uniform Timesteps

 Minor-to-none improvements in performance

 More performant means – higher std.dev.
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Experiment 4
Baseline Function with Non-uniform Timesteps
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  Interchanged schedule and modified baseline may 
improve the baseline performance

 Theory suggests that L2 models tend to remove too much noise

 Effects decline with increased timesteps 
 Robustness of more gradual diffusion

 Quality in may be more dependent on the progression 
rather than discretization itself

 Exp 4 compression of timesteps alone does not yield 
improvements and may degrade results

Summary
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Thank you!
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Backup 1
Experiment 1: Normalized vs Unnormalized functions

 For range (0.5 – 0.05) different effective values

 Normalize via linear scaling ->

After normalization
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Backup 2
Metrics of Unprocessed Dataset

Baseline model processing results
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Backup 3
Further Increased Timesteps
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Backup 4
Decreased Sigmas
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Backup 4
Decreased Sigmas
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