Role of Samplers in Diffusion Based **Generative Models**

MSc Medialogy MED10 Aalborg University, Copenhagen

Role of Samplers in Diffusion Based Generative Models

Agenda

- Introduction
 - Generative AI and Diffusion-Based Models
 - Applications
- Background
 - Diffusion-Based Speech Enhancement
- Problem Statement
- Methodology
- Results
- Summary

Introduction

Generative AI Models

- Discriminative AI learn the decision boundary
 - Conv.Neural Nets (CNN), Multilayer Percept. (MLP), Transformers
- Generative AI learn the underlying data distribution
 - Variational Autoencoders (VAE), Generative Adversarial Networks (GAN), Boltzmann machines, Transformers, Diffusion models
- Dependent on the objective and training setup

Image from https://github.com/NVIabs/stylegan

Introduction

Diffusion-Based Generative AI Models

- Diffusion (iterative process)
 - Forward-diffusion: corrupt a datapoint with noise
 - Reverse-diffusion: reverse the noise into data
- This process can be optionally be guided via conditioning

Image from https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-2/

Ernests Lavrinovics MED10, AAU-CPH Role of Samplers in Diffusion Based Generative Models

Introduction Applications of Diffusion Models

- Image processing
 - Restoration (super resolution, inpainting, colorization)
 - Anomaly detection, semantic segmentation
- Audio processing
 - Speech and music enhancement/generation (communications, restoration)
- Dataset generation

OpenAI's Dall-E 2

Left: "Panda mad scientist mixing sparkling chemicals" Right: "A corgi's head depicted as an explosion in nebula" Noisy / Enhanced

"We'll eat frozen pizzas all day.. All day every day" UNIVERSE: https://serrjoa.github.io/projects/universe/

Ernests Lavrinovics MED10, AAU-CPH Role of Samplers in Diffusion Based Generative Models

Diffusion-Based Speech Enhancement

- Task is **conditional generation**, we want to guide the process based on an impaired speech signal
- Ref. contribution* takes theory from image processing
- Forward-process expressed using an SDE

Image from*

*Richter, et.al. "Speech Enhancement and Dereverberation with Diffusion-Based Generative Models", IEEE/ACM Transactions on Audio, Speech, and Language Processing

Ernests Lavrinovics MED10, AAU-CPH Role of Samplers in Diffusion Based Generative Models

Diffusion-Based Speech Enhancement: Forward Process

 $d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, \mathbf{y})dt + g(t)d\mathbf{w}$

 $\mathbf{f}(\mathbf{x}_t, \mathbf{y}) := \gamma(\mathbf{y} - \mathbf{x}_t)$ // y = noisy, x₀ = clean, y = stiffness scalar

Image from*

*Richter, et.al. "Speech Enhancement and Dereverberation with Diffusion-Based Generative Models", IEEE/ACM Transactions on Audio, Speech, and Language Processing

Ernests Lavrinovics MED10, AAU-CPH Role of Samplers in Diffusion Based Generative Models

Diffusion-Based Speech Enhancement: Reverse Process

• The reverse process is also called *sampling*

 $d\mathbf{x}_t = \left[-\mathbf{f}(\mathbf{x}_t, \mathbf{y}) + g(t)^2 \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t | \mathbf{y})\right] dt + g(t) d\bar{\mathbf{w}}$

- Predict by integrating reverse time SDE with an SDE solver
- Correct by numerical optimization

*Richter, et.al. "Speech Enhancement and Dereverberation with Diffusion-Based Generative Models", IEEE/ACM Transactions on Audio, Speech, and Language Processing

Ernests Lavrinovics MED10, AAU-CPH Role of Samplers in Diffusion Based Generative Models

Diffusion-Based Speech Enhancement: Reverse Process

 $d\mathbf{x}_t = \left[-\mathbf{f}(\mathbf{x}_t, \mathbf{y}) + g(t)^2 \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t | \mathbf{y})\right] dt + g(t) d\bar{\mathbf{w}}$

 $abla_{\mathbf{x}_t}\log p_t(\mathbf{x}_t|\mathbf{y})$ // Gradient of log-probability density w/r to data

Ernests Lavrinovics MED10, AAU-CPH Role of Samplers in Diffusion Based Generative Models

Diffusion-Based Speech Enhancement: Reverse Process

 $d\mathbf{x}_t = \left[-\mathbf{f}(\mathbf{x}_t, \mathbf{y}) + g(t)^2 \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t | \mathbf{y})\right] dt + g(t) d\bar{\mathbf{w}}$

 $abla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t | \mathbf{y})$ // Gradient of log-probability density w/r to data

 $d\mathbf{x}_t = \left[-\mathbf{f}(\mathbf{x}_t, \mathbf{y}) + g(t)^2 \mathbf{s}_{\theta}(\mathbf{x}_t, \mathbf{y}, t)\right] dt$ // In practice a parametrized neural net s θ

In the ideal scenario s $\theta = \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t | \mathbf{y})$

Ernests Lavrinovics MED10, AAU-CPH Role of Samplers in Diffusion Based Generative Models

Diffusion-Based Speech Enhancement: Noise Schedule

• σ controls the noise injections in forward/reverse processes within a defined min/max range

$$\sigma(t)^{2} = \frac{\sigma_{\min}^{2} \left(\left(\sigma_{\max} / \sigma_{\min} \right)^{2t} - e^{-2\gamma t} \right) \log(\sigma_{\max} / \sigma_{\min})}{\gamma + \log(\sigma_{\max} / \sigma_{\min})}$$

• Used during

• Training:
$$\underset{\theta}{\operatorname{arg\,min}\,\mathbb{E}_{t,(\mathbf{x}_0,\mathbf{y}),\mathbf{z},\mathbf{x}_t|(\mathbf{x}_0,\mathbf{y})}} \left\| \left\| \mathbf{s}_{\theta}(\mathbf{x}_t,\mathbf{y},t) + \frac{\mathbf{z}}{\sigma(t)} \right\|_2^2 \right\|_2$$

• Sampling: Corrector algorithm (score and Gaussian noise scaling)

Diffusion-Based Speech Enhancement: Noise Schedule

- Sampling routines in production do not need to follow training [2]
- Schedules can be fine-tuned during inference and is crucial for performance [1, 2]

[1] Chen T., On the importance of noise scheduling for diffusion models. arXiv preprint arXiv:2301.10972, 2023 [2] Karras T., et.al.. Elucidating the design space of diffusion-based generative models. NeurIPS, 2022

Ernests Lavrinovics MED10, AAU-CPH Role of Samplers in Diffusion Based Generative Models

Problem Statement

- Diffusion models have flexible, tunable moving components
 - Component of the sampling routine noise schedule
- Investigate the interplay generated output and the noise scheduler
- Empirical study through a set of experiments

Methodology

- Four experiments set up
 - Interchanged scheduler functions
 - Baseline scheduler with modified derivative
 - Baseline scheduler with modified timesteps
 - Baseline scheduler with non-uniform timesteps
- Quantified through perceptual metrics
 - STOI (0-1), WARP-Q (.. 0), DNSMOS and PESQ (1 5)
- Results generated with *max* value per each metric
- Tests performed with a pseudo-random 35 datapoint test set
- Fixed model, stochasticity, sampling routine

Interchanged Scheduler Functions

- Baseline function mean_reverse_VE swapped with 5 other functions
- Given 0.5 0.05 range, normalize to effective values of the baseline

Role of Samplers in Diffusion Based Generative Models

Interchanged Scheduler Functions

		PESQ	STOI	WARPQ	DNSMOS
Linear	n=10	2.147 (± 0.617)	0.911 (± 0.06)	0.776 (± 0.199)	2.909 (±0.194)
	n=30	2.287 (± 0.631)	0.923 (± 0.057)	$0.755 (\pm 0.187)$	2.934 (± 0.186)
SubVP VE	n=10	$1.503 (\pm 0.261)$	$0.891 (\pm 0.062)$	0.884 (± 0.142)	2.549 (± 0.252)
	n=30	2.202 (± 0.631)	0.923 (± 0.057)	0.775 (± 0.193)	2.898 (± 0.197)
	n=10	1.62 (± 0.349)	$0.885 (\pm 0.064)$	$0.907 (\pm 0.149)$	2.619 (± 0.289)
	n=30	2.13 (± 0.641)	$0.92 (\pm 0.058)$	$0.774 (\pm 0.187)$	2.861 (± 0.208)
VD	n=10	2.122 (± 0.568)	$0.907 (\pm 0.061)$	0.774 (± 0.192)	2.925 (± 0.184)
V I	n=30	2.31 (± 0.609)	$0.92 (\pm 0.059)$	0.748 (± 0.179)	2.96 (± 0.179)
Nvidia	n=10	$1.883 (\pm 0.493)$	$0.908 (\pm 0.062)$	0.812 (± 0.177)	2.824 (± 0.212)
2	n=30	2.249 (± 0.64)	0.923 (± 0.057)	$0.759 (\pm 0.188)$	2.909 (± 0.196)
Pacalina	n=10	1.49 (± 0.249)	$0.884 (\pm 0.067)$	0.896 (± 0.139)	2.561 (± 0.265)
Baseline	n=30	2.175 (± 0.671)	$0.922 (\pm 0.056)$	$0.765 (\pm 0.198)$	2.927 (± 0.187)
			_		
		DAJELIN	E .		CLEAN
	N=10			.0	
	Ν	=30	N=3		

"Downing street will make the second appointment in the Scotland office today.."

Role of Samplers in Diffusion Based Generative Models

Experiment 1 Interchanged Scheduler Functions

Ernests Lavrinovics MED10, AAU-CPH Role of Samplers in Diffusion Based Generative Models

Baseline Function with Modified Derivative

- Introduce an α modifier, vary the curve steepness
- Idea: significant improvement threshold decrease with potentially higher peak performance

Role of Samplers in Diffusion Based Generative Models

Baseline Function with Modified Derivative

- N=10 mild-to-none increase in performance
- N=30 mild-to-none decrease of performance
- No clear winner for the modifications

		PESQ	STOI	WARPQ	DNSMOS
Alpha=1.05	n=10	1.498 (± 0.26)	$0.882 (\pm 0.067)$	0.905 (± 0.139)	2.563 (± 0.272)
	n=30	2.17 (± 0.671)	0.921 (± 0.056)	0.764 (± 0.2)	2.928 (± 0.186)
Alpha=1.1	n=10	1.513 (± 0.272)	$0.881 (\pm 0.067)$	0.913 (± 0.14)	2.566 (± 0.28)
	n=30	2.167 (± 0.67)	0.921 (± 0.057)	0.768 (± 0.201)	2.912 (± 0.191)
Alpha=1.2	n=10	1.548 (± 0.304)	$0.879 (\pm 0.066)$	0.928 (± 0.144)	2.586 (± 0.287)
	n=30	2.156 (± 0.67)	0.921 (± 0.057)	0.767 (± 0.2)	2.912 (± 0.194)
Alpha=1.5	n=10	1.504 (± 0.296)	$0.864 (\pm 0.064)$	$1.017 (\pm 0.114)$	2.498 (± 0.284)
	n=30	2.089 (± 0.68)	0.916 (± 0.06)	0.782 (± 0.206)	2.888 (± 0.217)
Baseline	n=10	1.49 (± 0.249)	0.884 (± 0.067)	0.896 (± 0.139)	2.561 (± 0.265)
	n=30	2.175 (± 0.671)	0.922 (± 0.056)	$0.765 (\pm 0.198)$	2.927 (± 0.187)

Experiment 2 Baseline Function with Modified Derivative

Ernests Lavrinovics MED10, AAU-CPH Role of Samplers in Diffusion Based Generative Models

Baseline Function with Timestep Offset

- Apply an $\pmb{\alpha}$ modifier and project the unmodified σ
- Idea: Compress the sampling points, decrease the amount of noise per step

Ernests Lavrinovics MED10, AAU-CPH Role of Samplers in Diffusion Based Generative Models

Baseline Function with Timestep Offset

- Consistent improvement over baseline
- Effect decays with increase of step size

<i>a</i>		PESQ	STOI	WARPQ	DNSMOS
Alpha=0.8	n=10	1.945 (± 0.526)	0.903 (± 0.064)	0.834 (± 0.169)	2.809 (± 0.234)
	n=15	2.135 (± 0.606)	0.915 (± 0.06)	0.779 (± 0.189)	2.918 (± 0.227)
	n=30	2.211 (± 0.669)	0.923 (± 0.55)	0.759 (± 0.201)	2.944 (± 0.181)
Baseline	n=10	1.49 (± 0.249)	$0.884 (\pm 0.067)$	0.896 (± 0.139)	2.561 (± 0.265)
	n=15	1.93 (± 0.471)	0.911 (± 0.06)	$0.805 (\pm 0.178)$	2.858 (± 0.238)
	n=30	2.175 (± 0.671)	0.922 (± 0.56)	0.765 (± 0.198)	2.927 (± 0.187)

Ernests Lavrinovics MED10, AAU-CPH Role of Samplers in Diffusion Based Generative Models

Experiment 3 Baseline Function with Timestep Offset

Role of Samplers in Diffusion Based Generative Models

Ernests Lavrinovics MED10, AAU-CPH

Baseline Function with Non-uniform Timesteps

- Exp 3. schedule σ projected back to the baseline
- Idea: Compress sampling points towards the end, move back to familiar σ -t ratios

Ernests Lavrinovics MED10, AAU-CPH Role of Samplers in Diffusion Based Generative Models

Baseline Function with Non-uniform Timesteps

- Minor-to-none improvements in performance
- More performant means higher std.dev.

		PESQ	STOI	WARPQ	DNSMOS
	n=10	1.464 (± 0.238)	$0.878 (\pm 0.067)$	0.912 (± 0.134)	2.567 (± 0.265)
Alpha=0.8	n=15	2.1 (± 0.603)	0.91 (± 0.061)	0.791 (± 0.193)	2.884 (± 0.253)
2650 64	n=30	2.187 (± 0.671)	$0.922 (\pm 0.056)$	0.761 (± 0.203)	2.936 (± 0.192)
Baseline	n=10	1.49 (± 0.249)	0.884 (± 0.067)	0.896 (± 0.139)	2.561 (± 0.265)
	n=15	1.93 (± 0.471)	0.911 (± 0.06)	$0.805 (\pm 0.178)$	2.858 (± 0.238)
	n=30	2.175 (± 0.671)	$0.922 (\pm 0.56)$	0.765 (± 0.198)	2.927 (± 0.187)

Experiment 4 Baseline Function with Non-uniform Timesteps

Role of Samplers in Diffusion Based Generative Models

Ernests Lavrinovics MED10, AAU-CPH

Summary

- Interchanged schedule and modified baseline may improve the baseline performance
 - Theory suggests that L2 models tend to remove too much noise
- Effects decline with increased timesteps
 - Robustness of more gradual diffusion
- Quality in may be more dependent on the progression rather than discretization itself
 - Exp 4 compression of timesteps alone does not yield improvements and may degrade results

Thank you!

Backup 1

Experiment 1: Normalized vs Unnormalized functions

- For range (0.5 0.05) different effective values
- Normalize via linear scaling -> $f(\sigma, x, y) = \frac{(\sigma \sigma_{min})}{(\sigma_{max} \sigma_{min})} * (y x) + x$

Role of Samplers in Diffusion Based Generative Models

Backup 2 Metrics of Unprocessed Dataset

(a) 35 random sample subsplit.

Baseline	n=10 n=30	$2.175 (\pm 0.671)$	$0.922 (\pm 0.056)$	$0.765 (\pm 0.199)$	$2.927 (\pm 0.187)$	
Baseline model processing results						

Role of Samplers in Diffusion Based Generative Models

Backup 3 Further Increased Timesteps

Ernests Lavrinovics MED10, AAU-CPH Role of Samplers in Diffusion Based Generative Models

Backup 4 Decreased Sigmas

Backup 4 Decreased Sigmas

Schedule: ('mean_reverse_VE', 0.049); n_steps = 15

Ernests Lavrinovics MED10, AAU-CPH Role of Samplers in Diffusion Based Generative Models